КОД

ВСЕРОССИЙСКАЯ ПРОВЕРОЧНАЯ РАБОТА

ФИЗИКА

11 КЛАСС

Вариант 1

Инструкция по выполнению работы

Проверочная работа включает в себя 18 заданий. На выполнение работы по физике отводится 1 час 30 минут (90 минут).

Оформляйте ответы в тексте работы согласно инструкциям к заданиям. В случае записи неверного ответа зачеркните его и запишите рядом новый.

При выполнении работы разрешается использовать калькулятор и линейку.

При выполнении заданий Вы можете использовать черновик. Записи в черновике проверяться и оцениваться не будут.

Советуем выполнять задания в том порядке, в котором они даны. Для экономии времени пропускайте задание, которое не удаётся выполнить сразу, и переходите к следующему. Если после выполнения всей работы у Вас останется время, Вы сможете вернуться к пропущенным заданиям.

Баллы, полученные Вами за выполненные задания, суммируются. Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.

Желаем успеха!

Таблица для внесения баллов участника

Номер задания	2	3	4	5	6	′				i			CCLLICD	Отметка за работу
Баллы														

Ниже приведены справочные данные, которые могут понадобиться Вам при выполнении работы.

Десятичные приставки

Наимено-	Обозначение	Множитель	Наимено-	Обозначение	Множитель
вание			вание		
гига	Γ	10 ⁹	санти	с	10^{-2}
мега	M	10^{6}	милли	M	10^{-3}
кило	К	10^{3}	микро	MK	10^{-6}
гекто	Γ	10^{2}	нано	Н	10^{-9}
деци	Д	10^{-1}	пико	П	10^{-12}

Константы	
ускорение свободного падения на Земле	$g = 10 \text{ m/c}^2$ $G = 6.7 \cdot 10^{-11} \text{ H} \cdot \text{m}^2/\text{kg}^2$
гравитационная постоянная	$G = 6.7 \cdot 10^{-11} \text{ H} \cdot \text{m}^2/\text{кг}^2$
универсальная газовая постоянная	R = 8.31 Дж/(моль·К)
скорость света в вакууме	$c = 3 \cdot 10^8 \text{ m/c}$
коэффициент пропорциональности в законе Кулона	$k = 9 \cdot 10^9 \text{ H} \cdot \text{м}^2 / \text{K} \text{л}^2$
модуль заряда электрона	1 6 10-19 16
(элементарный электрический заряд)	$e = 1,6 \cdot 10^{-19} \text{ K}$ л
постоянная Планка	$h = 6.6 \cdot 10^{-34} \text{Дж} \cdot \text{c}$

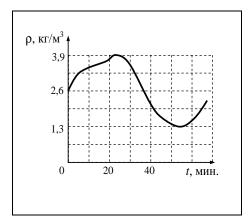
КОД	
r 1	

		`
/	4	١
(1
١.	1	- 1
\		

Прочитайте перечень понятий, с которыми Вы встречались в курсе физики:

внутренняя энергия, барометр-анероид, дифракция, электрический заряд, гигрометр, период колебаний, мензурка.

Выделите среди этих понятий две группы по выбранному Вами признаку. В каждой группе должно быть не менее двух понятий. Запишите в таблицу название каждой группы и понятия, входящие в эту группу.

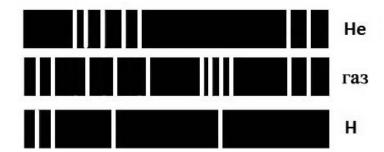

Название группы понятий	Перечень понятий

- Выберите два верных утверждения о физических явлениях, величинах и закономерностях. Запишите в ответе их номера.
 - 1) При решении задачи о движении Луны вокруг Земли по орбите Луну можно рассматривать как материальную точку.
 - 2) Броуновским движением называют самопроизвольное перемешивание газов или жидкостей.
 - 3) В гальваническом элементе происходит преобразование химической энергии в электрическую.
 - 4) Инфракрасное, ультрафиолетовое и видимое излучения имеют электромагнитную природу и различаются скоростью распространения в вакууме.

	5) Изотопами называются ядра разных элементов с одинаковым массовым числом.
	Ответ:
3	Мяч, неподвижно лежавший на полу вагона поезда, движущегося относительно Земли, покатился вперёд по ходу поезда. Как при этом изменилась скорость поезда относительно Земли?
	Otret:

4

Идеальный газ находится в сосуде под массивным поршнем, и давление газа поддерживается постоянным. Плотность идеального газа меняется с течением времени так, как показано на рисунке. Какова плотность газа в тот момент, когда его температура минимальна?



C

Ответ

5

На рисунке приведены спектры излучения атомарных паров гелия, неизвестного газа и водорода. Какое(-ие) вещество(-а) – водород или гелий – входит(-ят) в состав неизвестного газа?

Ответ

6

Ядро атома содержит 126 нейтронов и 82 протона. Используя фрагмент Периодической системы элементов Д.И. Менделеева, определите название элемента, один из изотопов которого имеет такой состав ядра.

80	Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 R	n
200,59	**5	204,37	207,19	208,980	[210]	210	[222]	
	Ртуть	Таллий	Свинец	Висмут	Полоний	Астат	Раде	ЭН

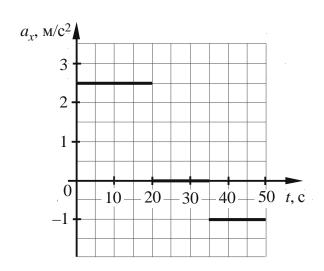
Отрет

КОД	
-----	--

(7)

Рыболов вытащил надувную лодку из воды и оставил её на берегу под палящими лучами солнца. Как за первые минуты пребывания лодки на берегу изменились давление воздуха в лодке и среднеквадратичная скорость молекул газов, входящих в его состав? Объём лодки считать неизменным.

Для каждой величины определите соответствующий характер изменения:


- 1) увеличилась
- 2) уменьшилась
- 3) не изменилась

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Давление воздуха	Среднеквадратичная скорость движения молекул газов

8

На рисунке представлены графики зависимости проекции ускорения от времени для тела, движущегося вдоль оси 0x. В начальный момент времени тело покоилось. Масса тела равна 4 кг.

Выберите два верных утверждения, соответствующих данным графика. Запишите в ответе их номера.

- 1) Модуль равнодействующей силы, действующей на тело, был минимальным в интервале времени от 35 с до 50 с.
- 2) В течение первых 20 с на тело действовала равнодействующая сила, равная 10 Н.
- 3) В интервале времени от 20 с до 35 с тело двигалось равноускоренно.
- 4) Через 50 с после начала движения тело остановилось.
- 5) Через 10 с после начала движения скорость тела равнялась 25 м/с.

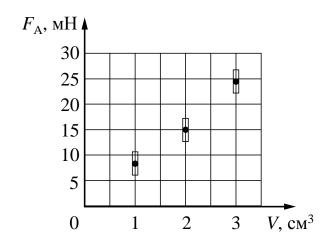
Ответ:	

9

В дачном домике линия электропередачи для розеток оснащена автоматическим выключателем, который размыкает линию, если сила тока в ней превышает 16 А. Напряжение электрической сети 220 В.

В таблице представлены электрические приборы, используемые в доме, и потребляемая ими мощность.

Электрические приборы	Потребляемая мощность, Вт
Телевизор	400
Электрический обогреватель	2000
Пылесос	650
Холодильник	180
СВЧ-печь	800
Электрический чайник	2000
Электрический утюг	1500

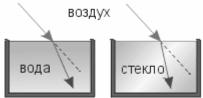

Можно ли при включенном обогревателе и холодильнике дополнительно включить СВЧ-печь? Запишите решение и ответ.

i ciliciliic.			
-			

)TRe

(10)

Ученик исследовал зависимость силы Архимеда от объёма погруженной в жидкость части тела. Погрешность измерения силы Архимеда равна 2,5 мH, а объёма тела – 0,05 см³. Результаты измерений с учётом их погрешности представлены на графике.



Какова приблизительно плотность жидкости, в которую опускали тело?

Ответ: _____ кг/м³.

(11)

Учитель на уроке провёл серию опытов по преломлению светового луча на границе различных прозрачных сред: воздух-вода и воздух-стекло (см. рисунок).

	Какой вывод можно сделать на основании проведённых опытов?
Ответ:	Ответ:

На рисунке изображена установка для изучения подъёмной силы электромагнита. Катушка электромагнита подключается к источнику тока через реостат, при помощи которого можно изменять силу тока через электромагнит. Электромагнит способен притягивать мелкие гвоздики с горизонтальной поверхности стола.

Вам необходимо показать, что подъёмная сила электромагнита зависит от силы тока, протекающего по его обмотке. Имеется следующее оборудование:

- мелкие стальные гвоздики;
- электромагнит;
- реостат;
- ключ;
- источник тока;
- соединительные провода.

В ответе:

- 1. Опишите экспериментальную установку.
- 2. Опишите порядок действий при проведении исследования.

Ответ:			
_			
_			

(13)

Установите соответствие между устройствами и видами электромагнитных волн, которые используются в этих устройствах. Для каждого устройства из первого столбца подберите соответствующий вид электромагнитных волн из второго столбца.

УСТРОЙСТВА

ВИДЫ ЭЛЕКТРОМАГНИТНЫХ ВОЛН

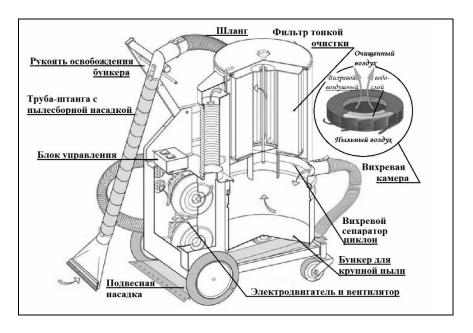
- A) лампы в соляриях, способствующие образованию в коже человека витамина D
- Б) приборы для исследования атомной кристаллической решётки монокристаллов
- 1) световые
- 2) инфракрасные
- 3) рентгеновские
- 4) ультрафиолетовые

Запишите в таблицу выбранные цифры под соответствующими буквами.

	A	Б
Ответ:		

КОД

Прочитайте фрагмент технического описания пылесоса и выполните задания 14 и 15.


Пылесос

Устройство пылесоса с момента его изобретения в 1860-х гг. осталось в основном прежним. Электровентилятор, создавая разрежение в камере, засасывает через шланг с насадками пыль вместе с воздухом. Затем пропускает воздух с пылью через несколько пылеуловителей (фильтров), и выталкивает воздух наружу.

В промышленных пылесосах крупный мусор, попадая из шланга в камеру-бункер, где скорость воздушного потока ниже, оседает на дно. Более мелкие частицы, вовлекаясь в спиралевидное движение в сепараторе-циклоне, относятся на периферию. При этом фильтры тонкой очистки, выполненные из пористого материала, способны задерживать частицы пыли размером меньше микрона.

В ряде моделей перед фильтром размещают вихревую камеру с пенным водовоздушным слоем, обеспечивающим улавливание пыли за счёт её смачивания. В таких пылесосах есть специальный бункер с водой.

Современные пылесосы (мощностью до 3 кВт) – сложные приборы, они оснащены системой автоматики, которая может, например, реагируя на уменьшение разрежения в камере, сигнализировать о заполнении бункера, мешка фильтра и т.п.

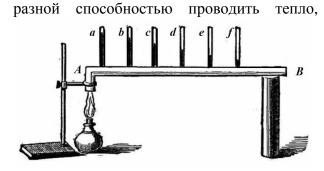
Правила эксплуатации

- 1. Не оставляйте включённый пылесос без присмотра.
- 2. Не отсоединяйте пылесос от сети, держась за кабель.
- 3. Не трогайте влажными руками вилку или пылесос.
- 4. Не допускайте контакта волос, одежды, пальцев с отверстиями в корпусе пылесоса.
- 5. Не используйте пылесос для сбора воды и горючих веществ (бензин, керосин).

14	Потребляемая мощность пылесоса с вихревой камерой в качестве пылеуловителя − 2,5−3 кВт,
<u> </u>	
	мощности, потребляемой пылесосом?

Ответ:	

/	_	$\overline{}$	
/	1	=)	١
\	1	J	•
\			


Почему опасно, чтобы длинные волосы находились вблизи всасывающих отверстий и трубок пылесоса?

Ответ:		

Прочитайте текст и выполните задания 16, 17 и 18.

Как исследовали теплопроводность материалов

То, что различные тела обладают т.е. разной теплопроводностью, было известно давно, однако инструментальные исследования начались лишь в конце XVIII в. Ж.-Б.-Фурье предложил способ, показанный на рисунке: в стержне AB, один конец которого нагревался, на равном расстоянии высверливались небольшие отверстия под термометры $(a, b, \dots f)$. Вначале температура каждого термометра поднималась, но затем

подъём прекращался, устанавливалось стационарное распределение температуры вдоль стержня. *Лучшей теплопроводностью* обладал тот материал, для которого различие между показаниями двух соседних термометров было *наименьшее*. Используя эту идею, Г. Видеман и Р. Франц получили данные о теплопроводности металлов и сплавов, сопоставив их с электропроводностью. Результаты опытов в относительных единицах представлены в табл. 1 (наилучшая проводимость – у серебра; наихудшая – у висмута).

Наряду с теплофизическими свойствами проводников, изучались и аналогичные свойства теплоизоляторов. Граф Б.-Т. Румфорд исследовал теплопроводность материалов, используемых для одежды. Он помещал термометр в стеклянную трубку с окончанием в виде сферы так, чтобы шарик термометра был в её центре. Пространство между стеклянной сферой и термометром заполнялось исследуемой материей. Вся трубка сначала помещалась в горячую воду, прогревалась до тех пор, пока не устанавливалась неизменная температура, затем прибор помещался в смесь толчёного льда и соли и охлаждался. В опытах измерялось время понижения температуры для каждого материала на 135 °F (57,2 °C). Данные, полученные Румфордом, представлены в табл. 2.

Наряду с экспериментальной базой в XIX в. были заложены и основы теории теплопроводности.

Таблица 1. Проводники			
	Провод	имость	
Металл	теплоты	электр.	Плотность,
IVICTAIIII	Относительные		Γ^2/cm^3
	един	ицы	
Серебро	100	100	10,49
Медь	73	74	8,93
Золото	59	53	19,32
Олово	23	15	7,28
Железо	13	12	7,85
Свинец	11	9	11,34
Платина	10	8	21,40
Висмут	2	2	9,79

Таблица 2. Теплоизоляторы			
Материал		Bper	RN
		мин.	c
Шёлк	кручёный	15	17
шелк	сырец	21	04
Лён		17	12
Хлопок-сырец		17	26
Овечья шерсть		18	38
Бобровый мех		21	36
Гагачиі	Гагачий пух		45
Заячий	мех	21	52

16)	Вставьте в предложение пропущенные слова, используя информацию из текста.
	Исследуяолова и свинца на одной и той же установке Фурье можно видеть, что соседние термометры показывают разноститемператур в случае изучения олова.
17	Какой материал, по данным Румфорда, является самым тёплым для зимней одежды?
	Ответ:
18	Известно, что теплопроводность воздуха тем выше, чем больше его плотность. Справедлив ли этот вывод для металлов? С какой их характеристикой согласуется теплопроводность металлов?
	Ответ: