3

Единый государственный экзамен по ХИМИИ

Инструкция по выполнению работы

Экзаменационная работа состоит из двух частей, включающих в себя 34 задания. Часть 1 содержит 28 заданий с кратким ответом, часть 2 содержит 6 заданий с развёрнутым ответом.

На выполнение экзаменационной работы по химии отводится 3,5 часа (210 минут).

Ответом к заданиям части 1 является последовательность цифр или число. Ответ запишите по приведённым ниже <u>образцам</u> в поле ответа в тексте работы, а затем перенесите в бланк ответов № 1. Последовательность цифр в заданиях 1-25 запишите без пробелов, запятых и других дополнительных символов.

КИМ	Ответ: 3 5	3 3 5	Блан
	Otbet: $\begin{array}{ c c c c c c c c c c c c c c c c c c c$	8 42	
	Ответ: 3,4	273,4	

Ответы к заданиям 29–34 включают в себя подробное описание всего хода выполнения задания. В бланке ответов № 2 укажите номер задания и запишите его полное решение.

Все бланки ЕГЭ заполняются яркими чёрными чернилами. Допускается использование гелевой, капиллярной или перьевой ручек.

При выполнении заданий можно пользоваться черновиком. Записи в черновике, а также в тексте контрольных измерительных материалов не учитываются при оценивании работы.

При выполнении работы используйте Периодическую систему химических элементов Д.И. Менделеева; таблицу растворимости солей, кислот и оснований в воде, электрохимический ряд напряжений металлов. Эти сопроводительные материалы прилагаются к тексту работы.

Для вычислений используйте непрограммируемый калькулятор.

Баллы, полученные Вами за выполненные задания, суммируются. Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.

После завершения работы проверьте, чтобы ответ на каждое задание в бланках ответов №1 и №2 был записан под правильным номером.

Желаем успеха!

Часть 1

Ответами к заданиям 1–25 являются последовательность цифр. Ответ запишите в поле ответа в тексте работы, а затем перенесите в БЛАНК ОТВЕТОВ № 1 справа от номера соответствующего задания, начиная с первой клеточки. Последовательность цифр записывайте без пробелов, запятых и других дополнительных символов. Каждый символ пишите в отдельной клеточке в соответствии с приведёнными в бланке образцами. Цифры в ответах на задания 7, 8, 10, 14, 15, 19, 20, 22, 23, 24, 25 могут повторяться.

Для выполнения заданий 1-3 используйте следующий ряд химических

	элементов.
	1) Sn 2) Fe 3) Ge 4) Pb 5) Cr
	Ответом в заданиях 1—3 является последовательность цифр, под которыми указаны химические элементы в данном ряду.
1	Определите, у атомов каких из указанных в ряду элементов валентные электроны
	\Box находятся как на s -, так и на d -подуровнях.
	Запишите в поле ответа номера выбранных элементов.
	Ответ:
2	Из указанных в ряду химических элементов выберите три элемента, которые в
	Периодической системе химических элементов Д.И. Менделеева находятся в
	одной группе.
	Расположите выбранные элементы в порядке усиления основных свойств
	образуемых ими оксидов.
	Ответ:
3	Из указанных в ряду элементов выберите два элемента, которые в соединениях
	могут проявлять степень окисления +6.
	Запишите в поле ответа номера выбранных элементов.
	Ответ:

- 4 Из предложенного перечня выберите два вещества, для каждого из которых характерно наличие водородной связи между молекулами
 - 1) вода
 - 2) муравьиная кислота
 - 3) бензол
 - 4) стирол
 - 5) пропионовый альдегид

Запишите в поле ответа номера выбранных веществ.

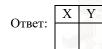
Ответ:

5 Среди предложенных формул веществ, расположенных в пронумерованных ячейках, выберите формулы: А) несолеобразующего оксида; Б) основного оксида; В) амфотерного гидроксида.

1	Ba(OH) ₂	Zn(OH) ₂	Na ₂ O
4	BaO ₂	5 P ₂ O ₅	6 N ₂ O
7	NO ₂	8 NH ₄ NO ₃	9 Fe(OH) ₂

Запишите в таблицу номера ячеек, в которых расположены вещества, под соответствующими буквами.

Ответ:


	A	Б	В
:			

6 Даны две пробирки с раствором гидросульфида калия. В первую пробирку добавили раствор сильного электролита X и наблюдали выделение газа. Во вторую пробирку добавили раствор вещества Y. В этой пробирке произошла реакция, которую описывает сокращенное ионное уравнение.

$$HS^- + OH^- = S^{2-} + H_2O$$

- 1) гидроксид кальция
- 2) аммиак
- 3) бромоводород
- 4) вода
- 5) гидроксид натрия

Запишите в таблицу номера выбранных веществ под соответствующими буквами

7 Установите соответствие между формулой вещества и реагентами, с каждым из которых это вещество может взаимодействовать: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

ФОРМУЛА ВЕЩЕСТВА

РЕАГЕНТЫ

- A) Li
- Б) Cl₂ (г.)
- B) CO₂
- Γ) Al(OH)₃

- 1) C, Mg, NaOH
- 2) K₂S, NaOH, BaCl₂
- 3) H₂O, N₂, Cl₂
- 4) Ba(OH)₂, HCl, HI
- 5) Cu, P, Na

Установите соответствие между исходными веществами, вступающими в реакцию, и продуктами, которые образуются при взаимодействии этих веществ: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

ИСХОДНЫЕ ВЕЩЕСТВА

ПРОДУКТЫ РЕАКЦИИ

- A) KHCO₃ и Ca(OH)₂
 - 1) KOH и H₂
- Б) К₂О и Н₂О
- 2) KHCO₃ и Ca(OH)₂
- $Ca(HCO_3)_2$ и $KOH_{(изб.)}$
- 3) Ca(HCO₃)₂ и KOH

 Γ) KH и H₂O

- 4) KOH и H₂O₂
- CaCO₃, K₂CO₃ и H₂O
- 6) KOH

Запишите в таблицу выбранные цифры под соответствующими буквами.

	A	Б	В	Γ
Ответ:		4		7

Вадана следующая схема превращений веществ:

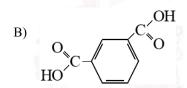
$$FeS_2 \xrightarrow{X} Fe_2O_3 \xrightarrow{Y} Fe_3O_4$$

Определите, какие из указанных веществ являются веществами X и Y.

- 1) H₂
- 2) H₂O
- HI
- 4) HNO₃ (разб.)
- 5) O₂

Запишите в таблицу номера выбранных веществ под соответствующими буквами.

Установите соответствие между формулой вещества и классом/группой органических соединений, к которому(-ой) это вещество принадлежит: к каждой позиции, обозначенной буквой, подберите соответствующую позицию обозначенную цифрой.


ФОРМУЛА ВЕЩЕСТВА

КЛАСС/ГРУППА ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

- CH2-CH2-OH
- 2) сложные эфиры
- O-CH₂-CH₃
- кетоны

спирты

карбоновые кислоты

Запишите в таблицу выбранные цифры под соответствующими буквами.

	A	Б	В
Ответ:			

- Из предложенного перечня веществ выберите два вещества, которые существую в виде иис-, транс-изомеров.
 - 2-метилбутен-2
 - бутен-1
 - бутен-2
 - 4-метилпентен-2
 - бутин-2

Запишите номера выбранных ответов.

Ответ:	Д	J
--------	---	---

- 12 Из предложенного перечня выберите все вещества, при взаимодействии каждого из которых с водным раствором перманганата калия образуется двухатомный спирт.
 - 1) бутен-1
 - 2) этилбензол
 - 3) пропилен
 - 4) бутин-2
 - 5) 2-фенилпропен

Запишите номера выбранных ответов.

Ответ:

- 13 Из предложенного перечня выберите два вещества, с которыми <u>н</u> взаимодействует глицерин.
 - 1) метанол
 - 2) медь
 - 3) уксусная кислота
 - 4) азотная кислота
 - 5) водород

Запишите в поле ответа номера выбранных веществ.

Установите соответствие между схемой реакции и веществом X, принимающим в ней участие: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

СХЕМА РЕАКЦИИ

1) CH₂CH

- \mathbf{A}) X $\xrightarrow{ZnO,\ Al_2O_3,\ t^\circ}$ бутадиен-1,3
- $X \xrightarrow{H_2SO_4, t^{\circ}}$ метилпропен (3) (С
- **B)** $X \xrightarrow{H_2SO_4, t^{\circ}}$ бутен-2
- Γ) $X \xrightarrow{KMnO_4, H^+}$ бутанон

- ВЕЩЕСТВО Х
- CH₃CH₂OH
 CH₃CH₂CH(OH)CH₃
- 3) (CH₃)₂CHCH₂OH
- 4) CH₃CHO
- 5) CH₃CH₂CH₂CHO
- 6) CH₃CH₂CH₂COOH

Запишите в таблицу выбранные цифры под соответствующими буквами.

Ответ:	A	Б	В	Γ
OIBCI.				BMO/

Установите соответствие между веществом и реакцией, в результате которой может быть получено это вещество: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

ВЕЩЕСТВО

- А) стеариновая кислота
- Б) муравьиная кислота
- В) пентанон-2
- Г) пентанон-3

- РЕАКЦИЯ
- пиролиз пропионата бария
 дегидратация пентанола-2
- 3) гидрирование олеиновой кислоты
- 4) гидролиз н-пропилформиата
- 5) гидратация пентина-1
- 6) окисление пентаналя

2

Вадана следующая схема превращений веществ:

$$C_2H_4 \xrightarrow{X} C_2H_5OH \xrightarrow{Y} C_2H_5Br$$

Определите, какие из указанных веществ являются веществами Х и У.

- 1) Br₂
- H₂O
- KOH
- HBr

Запишите в таблицу номера выбранных веществ под соответствующими буквами.

Ответ:

- Из предложенного перечня выберите все типы реакции, к которым можно отнести взаимодействие карбоната кальция с соляной кислотой.
 - 1) ионного обмена
 - окислительно-восстановительная
 - гетерогенная
 - каталитическая
 - обратимая

Запишите номера выбранных ответов.

Ответ:

- Из предложенного перечня выберите все внешние воздействия, которые приводят к увеличению скорости реакции пирита с кислородом.
 - использование катализатора
 - понижение давления в системе
 - увеличение концентрации кислорода
 - увеличение степени измельчения пирита
 - понижение температуры

Запишите номера выбранных ответов.

Ответ:

Установите соответствие между уравнением реакции и свойством элемента серы. которое он проявляет в этой реакции: к каждой позиции, обозначенной буквой. подберите соответствующую позицию, обозначенную цифрой.

УРАВНЕНИЕ РЕАКЦИИ

- A) $H_2SO_4 + P \rightarrow H_3PO_4 + SO_2 + H_2O$
- B) $H_2SO_4 + Zn \rightarrow ZnSO_4 + H_2$
- B) $H_2S + NaOH \rightarrow NaHS + H_2O$

СВОЙСТВО СЕРЫ

- 1) только окислитель
- 2) только восстановитель
- 3) и окислитель, и восстановитель
- 4) не проявляет окислительновосстановительных свойств

ПРОДУКТЫ ЭЛЕКТРОЛИЗА

Запишите в таблицу выбранные цифры под соответствующими буквами.

Б Ответ:

Установите соответствие между формулой вещества и продуктами электролиза водного раствора этого вещества, которые образуются на инертных электродах: к 🚫 каждой позиции, обозначенной буквой, подберите соответствующую позицию. обозначенную цифрой.

ФОРМУЛА ВЕЩЕСТВА

- A) AgF Б) NaCl
- $AgNO_3$
- Γ) NaNO₃

- 1) H_2, O_2
- 2) Ag, O₂
- 3) NO₂, H₂
- 4) H₂, Cl₂
- 5) Ag, F₂

Запишите в таблицу выбранные цифры под соответствующими буквами.

Ответ:

Для выполнения задания 21 используйте следующие справочные данные. Концентрация (молярная, моль/л) показывает отношение количества растворённого вещества (n) к объёму раствора (V). рН («пэ аш») – водородный показатель: величина, которая отражает концентрацию ионов водорода в растворе и используется для характеристики кислотности среды. Шкала рН водных растворов электролитов pН

21 Для веществ, приведённых в перечне, определите характер среды их водных растворов, имеющих одинаковую концентрацию (моль/л).

нейтральная

слабо

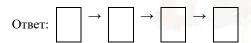
щелочная

сильно

щелочная

слабо

кислая


1) KMnO₄

Среда

раствора

- 2) Na₃PO₄
- 3) HNO₂
- 4) HNO₃

Запишите номера веществ в порядке возрастания значения рН их водных растворов.

сильно

кислая

Установите соответствие между способом воздействия на равновесную систему

$$CH_3OH_{(r)} \leftrightarrow CO_{(r)} + 2H_{2(r)}$$
 - Q

и направлением смещения химического равновесия в результате этого воздействия: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

ВОЗДЕЙСТВИЕ НА СИСТЕМУ

НАПРАВЛЕНИЕ СМЕШЕНИЯ ХИМИЧЕСКОГО РАВНОВЕСИЯ

- А) добавление катализатора
- понижение давления
- повышение температуры
- Г) уменьшение концентрации водорода
- 1) смещается в сторону прямой реакции
- смещается в сторону обратной реакции
- практически не смещается

Omnomi	A	Б	В	Γ	MI
Ответ:			14	100	
			-	DISTO	

23 В реакторе постоянного объёма смешали угарный газ и водород. Через некоторое время установилось равновесие:

$$CO_{(r)} + 2H_{2(r)} \rightleftarrows CH_3OH_{(r)}$$

(Другие процессы в системе не протекают.)

Используя данные, приведённые в таблице, найдите равновесную концентрацию ${\rm CO}\left(X \right)$ и исходную концентрацию водорода ${\rm H}_{2}\left(Y \right)$.

Вещество	CO	H_2	CH ₃ OH
Исходная концентрация (моль/л)	0,4		
Равновесная концентрация (моль/л)	300	0,1	0,25

Выберите из списка номера правильных ответов.

- 1) 0,1 моль/л
- 2) 0,15 моль/л
- 3) 0,25 моль/л
- 4) 0,3 моль/л
- 5) 0,35 моль/л
- 6) 0,6 моль/л

Запишите выбранные номера в таблицу под соответствующими буквами.

Ответ:

24 Установите соответствие между двумя веществами и реагентом, с помощью которого можно различить эти вещества: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

ВЕЩЕСТВА

РЕАГЕНТ

A) Cu и Fe₂O₃

1) Na₂SO₄

Б) K₂S и K₂SiO₃

2) Zn(OH)₂

B) Zn и Mg

3) HBr

 Γ) NaCl (p-p) и HCl (p-p)

- 4) NaI
- 5) KOH (p-p)

Запишите в таблицу выбранные цифры под соответствующими буквами.

Ответ:

Α	Б	В	Γ	

25 Установите соответствие между веществом и областью его применения: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

ВЕЩЕСТВО

ОБЛАСТЬ ПРИМЕНЕНИЯ

А) медь

- 1) изготовление стекла
- Б) полипропилен
- 2) получение удобрений

В) аммиак

- 3) изготовление упаковочной пленки
- 4) изготовление электропроводов

_	Α	Б	
Ответ:			

Ответом к заданиям 26-28 является число. Запишите это число в поле ответа в тексте работы, соблюдая при этом указанную степень точности. Затем перенесите это число в БЛАНК ОТВЕТОВ № 1 справа от номера соответствующего задания, начиная с первой клеточки. Каждый символ пишите в отдельной клеточке в соответствии с приведёнными в бланке образцами. Единицы измерения физических величин в бланке ответа указывать не нужно.

При проведении расчётов для всех элементов, кроме хлора, используйте значения относительных атомных масс, выраженные целыми числами $(A_r(Cl) = 35,5).$

26	Рассчитайте, сколько граммов ортофосфата калия следует растворить в 47 г
	15% -ного раствора соли для получения 64%-ного раствора? (Запишите число
	с точностью до целых.)

Окисление диоксида серы протекает в соответствии с термохимическим уравнением

$$2SO_2(\Gamma) + O_2(\Gamma) = 2SO_3(\Gamma) + 198 кДж.$$

Вычислите количество теплоты, которое выделится при окислении 268,8 л (н.у.) диоксида серы. (Запишите число с точностью до целых.)

Ответ:

При гидрировании этилена массой 70 г получен этан массой 30 г. Определите долю выхода продукта реакции.

Ответ:

Не забудьте перенести все ответы в бланк ответов № 1 в соответствии с инструкцией по выполнению работы.

Проверьте, что каждый ответ записан в строке с номером соответствующего задания.

Часть 2

Для записи ответов на задания 29–34 используйте БЛАНК ОТВЕТОВ №2. Запишите сначала номер задания (29, 30 и т.д.), а затем его подробное решение. Ответы записывайте чётко и разборчиво.

Для выполнения заданий 29 и 30 используйте следующий перечень веществ: Пероксид водорода, сульфид цинка, гидроксид калия, гидроксид хрома(III), сульфат аммония, хлорид бария. Допустимо использование водных растворов этих веществ.

- Из предложенного перечня выберите вещества, окислительновосстановительная реакция между которыми протекает с образованием раствора желтого цвета. В ответе запишите уравнение только одной из возможных окислительно-восстановительных реакций. Составьте электронный баланс, укажите окислитель и восстановитель в этой реакции.
- Из предложенного перечня выберите два вещества, реакция ионного обмена между которыми приводит к образованию слабого основания. Запишите молекулярное, полное и сокращённое ионное уравнения реакции с участием выбранных веществ.
- Хлорид кремния(IV) поместили в воду. Выпавший при этом осадок отделили, а в оставшийся раствор внесли фосфид цинка. Образовавшийся при этом газ пропустили через раствор, содержащий дихромат натрия и серную кислоту. Полученную при этом соль хрома отделили, растворили в воде и к полученному раствору добавили раствор карбоната калия. Напишите уравнения четырёх описанных реакций.
- Напишите уравнения реакций, с помощью которых можно осуществить следующие превращения:

$$\Gamma \text{ексан} \to X_1 \xrightarrow{H_2 \text{ (избыток)},Pt} \text{ циклогексан} \to X_2 \to X_3 \xrightarrow{K_2 Cr_2 O_7, H_2 SO_4, t^0}$$

При написании уравнений реакций указывайте преимущественно образующиеся продукты, используйте структурные формулы органических веществ.

- При нагревании образца карбоната бария часть вещества разложилась. При этом выделилось 1,12 л (н.у.) газа. Масса твёрдого остатка составила 27,35 г. К этому остатку добавили 73 г 30%-ного раствора соляной кислоты. Определите массовую долю кислоты в полученном растворе.
 - В ответе запишите уравнения реакций, которые указаны в условии задачи, и приведите все необходимые вычисления (указывайте единицы измерения искомых физических величин).
- При сгорании органического вещества А массой 3,03 г получили 3,136 л (н.у.) углекислого газа, 448 мл (н.у.) хлороводорода, 224 мл (н.у.) азота и 3,06 г воды. Вещество А образуется при действии хлорэтана на азотсодержащее вещество Б, молекула которого содержит четвертичный атом углерода. Напишите уравнение реакции получения вещества А из вещества Б и хлорэтана. На основании данных условия задания:
 - 1) проведите необходимые вычисления (указывайте единицы измерения искомых физических величин) и установите молекулярную формулу органического вещества А;
 - 2) составьте возможную структурную формулу вещества А, которая однозначно отражает порядок связи атомов в его молекуле;
 - 3) напишите уравнение реакции получения вещества А действием хлорэтана на соответствующее соединение Б (используйте структурные формулы органических веществ).

Проверьте, что каждый ответ записан рядом соответствующего задания.

О проекте «Пробный ЕГЭ каждую неделю»

Данный ким составлен командой всероссийского волонтёрского проекта «ЕГЭ 100БАЛЛОВ» https://vk.com/ege100ballov и безвозмездно распространяется для любых некоммерческих образовательных целей.

Нашли ошибку в варианте?

Напишите нам, пожалуйста, и мы обязательно её исправим! Для замечаний и пожеланий: https://vk.com/topic-10175642 47937899 (также доступны другие варианты для скачивания)

	СОСТАВИТЕЛЬ ВАРИАНТА:							
ФИО:	Ердикова Елизавета Евгеньевна							
Предмет:	Химия							
Стаж:	С 2016 года							
Образование:	Выпускница ФЕН НГУ							
Аккаунт ВК:	https://vk.com/e.erdikova							
Сайт и доп. информация:	https://vk.com/mine_chem							

корректоры варианта:							
Михаил Шапошников	https://vk.com/mshaposhnikov						
Анна Князева	https://vk.com/id3362216						

					PAC	гвори	MOCT	ь кис	слот,	соле	йиос	НОВА	ний і	в воді	Ε					
	H*	Li ⁺	K*	Na⁺	NH ₄ *	Ba ²⁺	Ca ²⁺	Mg ²⁺	Sr ²⁺	Al ³⁺	Cr ³⁺	Fe ²⁺	Fe ³⁺	Mn ²⁺	Zn ²⁺	Ag⁺	Hg ²⁺	Pb ²⁺	Sn ²⁺	Cu2+
OH-		P	P	P	P	P	M	Н	M	Н	Н	H	H	Н	Н	_	_	Н	Н	Н
F ⁻	P	M	P	P	P	M	Н	Н	H	M	Н	H	H	P	P	P	-	H	P	P
CIT	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	H	P	M	P	P
Br ⁻	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	H	M	M	P	P
-	P	P	P	P	P	P	P	P	P	P	?	P	?	P	P	H	H	H	M	?
S ²⁻	P	P	P	P	P	_	_	-	H	_	-	H	-	Н	H	H	H	H	H	H
HS-	P	P	P	P	P	P	P	P	P	?	?	?	?	?	?	?	?	?	?	?
SO ₃ ²⁻	P	P	P	P	P	H	H	M	H	?	-	H	?	?	M	H	H	H	?	?
SO ₄ 2-	P	P	P	P	P	H	M	P	H	P	P	P	P	P	P	M	_	H	P	P
HSO ₄	P	P	P	P	P	?	?	?	-	?	?	?	?	?	?	?	?	H	?	?
NO ₃	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	_	P
NO ₂	P	P	P	P	P	P	P	P	P	?	?	?	?	?	?	M	?	?	?	?
PO ₄ ³ -	P	H	P	P	_	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H
HPO ₄ ²⁻	P	?	P	P	P	H	H	M	H	?	?	H	?	H	?	?	?	M	H	?
H₂PO₄⁻	P	P	P	P	P	P	P	P	P	?	?	P	?	P	P	P	?	_	?	?
CO ₃ ²⁻	P	P	P	P	P	H	H	H	H	?	?	H	-	H	H	H	H	H	?	H
HCO ₃ ⁻	P	P	P	P	P	P	P	P	P	?	?	P	?	?	?	?	?	P	?	?
CH ₃ COO-	P	P	P	P	P	P	P	P	P	_	P	P	-	P	P	P	P	P	_	P
SiO ₃ ²⁻	H	H	P	P	?	H	H	H	H	?	?	H	?	H	H	?	?	H	?	?
MnO ₄	P	P	P	P	P	P	P	P	P	P	?	?	?	?	P	?	?	?	?	?
Cr ₂ O ₇ ²⁻	P	P	P	P	P	M	P	?	H	?	?	?	P	?	?	H	H	M	?	P
CrO ₄ ²⁻	P	P	P	P	P	H	P	P	H	?	?	?	H	H	H	H	H	H	H	H
CIO ₃	P	P	P	P	P	P	P	P	P	P	P	?	?	P	P	P	P	P	?	P
CIO ₄ -	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	?	P

[«]Р» – растворяется (> 1 г на 100 г H₂O);

РЯД АКТИВНОСТИ МЕТАЛЛОВ / ЭЛЕКТРОХИМИЧЕСКИЙ РЯД НАПРЯЖЕНИЙ Li Rb K Ba Sr Ca Na Mg Al Mn Zn Cr Fe Cd Co Ni Sn Pb (H2) Sb Bi Cu Hg Ag Pt Au

активность металлов уменьшается

[«]М» – мало растворяется (от 0,1 г до 1 г на 100 г H_2O)

[«]Н» - не растворяется (меньше 0,01 г на 1000 г воды);

^{«-» -} в водной среде разлагается

^{«?» –} нет достоверных сведений о существовании соединений

Периодическая система химических элементов Д.И. Менделеева

		Группы										
		1	II	III	IV	٧ .	VI	VII		V	/III	
	1	1 Н 1,008 Водород						(H)				2 Не 4,00 Гепий
п	2	3 Li6,94 Литий	4 Ве 9,01 Бериллий	5 10,81 B 50p	6 12,01 С Углерод	7 14,00 N Asot	8 16,00 О Кислорад	9 19,00 F Фтор				10 Ne 20,18 Неон
е	3	11 Na 22,99 Натрий	12 Mg 24,31 Магний	13 26,98 АІ Алюминий	14 28,09 Si Кремний 22	15 30,97 Р фосфор 23	16 32,06 S Cepa 24	17 35,45 CI Xnop 25				18 Аг 39,95 Аргон
p	4	19 K 39,10 Калий	20 Са 40,08 Кальций	21 SC 44,96 Скандий	Ті 47,90 Титан	V 50,94 Ванадий	Сг 52,00 Хром	Mn 54,94 Марганец	26 Fe 55,85 Железо	27 Со 58,93 Кобальт	28 Ni 58,69 Никель	
И		29 63,55 С u Медь	30 65,39 Zn Цинк	31 69,72 Ga Галлий	32 72,59 Ge Германий	33 74,92 As Мышьяк	34 78,96 Se Селен	35 79,90 Вг Бром				36 Кг 83,80 Криптон
Д	5	37 Rb 85,47 Рубидий	38 Sг 87,62 Стронций	39 Y 88,91 Иттрий	40 Zг 91,22 Цирконий	41 Nb 92,91 Ниобий	42 МО 95,94 Молибден	43 ТС 98,91 Технеций	44 Ru 101,07 Рутений	45 Rh 102,91 Родий	46 Pd 106,42 Папладий	
ы		47 107,87 Ag Cepe 6 po	48 112,41 Cd Кадмий	49 114,82 in Индий	50 118,69 Sn Onoso	51 121,75 Sb Сурьма	52 127,60 Te Tennyp	53 126,90 I Иод				54 Хе 131,29 Коенон
	6	55 СS 132,91 Цезий	56 Ва 137,33 Барий	Индий 57 La r 138,91 Лантан	72 Hf 178,49 Гафний	Сурьма 73 Та 180,95 Тантал	74 W 183,85 Вольфрам	Иод 75 Re 186,21 Рений	76 Os 190,2 Осмий	77 ГГ 192,22 Иридий	78 Pt 195,08 Платина	
		79 196,97 Au 30лото	80 200,59 Hg Ртуть	81 204,38 ТІ Таллий	82 207,2 Pb Свинец	83 208,98 Ві Висмут	84 [209] Ро Полоний	85 [210] At Actat				86 Rn [222] Радон
	7	87 Fr [223] Франций 111	88 Ra 226 Радий 112	89 Ас ··· [227] Актиний	104 Rf [261] Резерфордий	105 Db [262] Дубний 115	106 Sg [266] Сиборгий	107 Вh [264] Борий 117	108 Hs [269] Хассий	109 Mt [268] Мейтнерий	110 Ds [271] Дармштадтий	
		111 [280] Rg Рентгений	112 [285] Сп Коперниций	113 [286] Nh Нихоний	114 [289] FI Флеровий	115 [290] МС Московий	116 [293] LV Ливерморий	117 [294] Ts Теннесий				118 Од [294] Оганесон

* Пантаноилы

							Jianie	поиды						
	58	59	60	61	62	63	64	65	66	67	68	69	70	71
l C	e 140	Pr 141	Nd 144	Pm [145]	Sm 150	Eu 152	Gd 157	Tb 159	Dy 162,5	HO 165	Er 167	Tm 169	Yb 173	Lu 175
	ерий	Празеодим	Неодим	Прометий	Самарий	Европий	Гадолиний	Тербий	Диспрозий	Гольмий	Эрбий	Тулий	Иттербий	Лютеций
	** Актиноиды													
	90	91	92	93	94	95	96	97	98	99	100	101	102	103
T	h 232	Pa 231	U 238	Np 237	Pu [244]	Am [243]	Cm[247]	Bk[247]	Сf[251] Калифорний	Es [252]	Fm[257]	Md[258]	No [259]	Lr [262]

•

Система оценивания экзаменационной работы по химии

Часть 1

За правильный ответ на каждое из заданий 1-5, 9-13, 16-21, 25-28 ставится 1 балл.

Задание считается выполненным верно, если экзаменуемый дал правильный ответ в виде последовательности цифр или числа с заданной степенью точности.

Номер задания	Правильный ответ
1	25
2	314
3	25
4	12
5	632
9	51
10	124
11	SIGNOTUS 34
12	Autoropia 135
13	25
16	7 24
17	13
18	34
19	144
20	2421
21	4312
25	432
26	64
27	1188
28	40

Задания 6–8, 14, 15, 22, 23 и 24 считаются выполненными верно, если правильно указана последовательность цифр.

За полный правильный ответ в заданиях 6–8, 14, 15, 22, 23 и 24 ставится 2 балла; если допущена одна ошибка -1 балл; за неверный ответ (более одной ошибки) или его отсутствие -0 баллов.

Номер задания	Правильный ответ
6-01//=0	E100RALL (35)
7	3514
8	5651
14	1322
15	3451
22	3111
23	26
24	3352

Критерии оценивания заданий с развёрнутым ответом

Для выполнения заданий 29 и 30 используйте следующий перечень веществ: Пероксид водорода, сульфид цинка, гидроксид калия, гидроксид хрома(III), сульфат аммония, хлорид бария. Допустимо использование водных растворов этих веществ.

Из предложенного перечня выберите вещества, окислительновосстановительная реакция между которыми протекает с образованием раствора желтого цвета. В ответе запишите уравнение только одной из возможных окислительно-восстановительных реакций. Составьте электронный баланс, укажите окислитель и восстановитель в этой реакции.

Содержание верного ответа и указания по оцениванию	Баллы	$NH_4^+ + OH^- = NH_3 \cdot H_2O$
(допускаются иные формулировки ответа, не искажающие его смысла)		Ответ правильный и полный, содержи
Вариант ответа		элементы
Элементы ответа:		Правильно записан один элемент ответа
1) Выбраны вещества, и записано уравнение окислительно-		Все элементы ответа записаны неверно
восстановительной реакции:		INDETERMENT STAND
$3H_2O_2 + 2Cr(OH)_3 + 4KOH = 2K_2CrO_4 + 8H_2O$		TEOTPAPHS 1
2) Составлен электронный баланс, указаны окислитель и		
восстановитель:		
$2 \left \operatorname{Cr}^{+3} - 3\bar{e} \to \operatorname{Cr}^{+6} \right $		
$ \begin{array}{c c} 2 & \operatorname{Cr}^{+3} - 3\bar{e} \to \operatorname{Cr}^{+6} \\ 3 & 2\operatorname{O}^{-1} + 2\bar{e} \to 2\operatorname{O}^{-2} \end{array} $		
Кислород в степени окисления -1 (или пероксид водорода)		
является окислителем.		
Хром в степени окисления +3 (или гидроксид хрома(III)) -		
восстановителем.		
Ответ правильный и полный, содержит все названные выше	2	
элементы		
Правильно записан один элемент ответа	1	
Все элементы ответа записаны неверно	0	
Максимальный балл	2	400111

Из предложенного перечня веществ выберите соль цинка и вещество, которое вступает с этой солью цинка в реакцию ионного обмена. Запишите молекулярное, полное и сокращённое ионное уравнения только одной из возможных реакций.

Содержание верного ответа и указания по оцениванию (допускаются иные формулировки ответа, не искажающие его смысла)	Баллы
Вариант ответа	
Элементы ответа:	
 Выбраны вещества, и записано молекулярное уравнение реакции ионного обмена: 2KOH + (NH₄)₂SO₄ = K₂SO₄ + 2NH₃·H₂O Записаны полное и сокращенное ионное уравнения реакций: 2K⁺ + 2OH⁻ + 2NH₄⁺ + SO₄²⁻ = 2K⁺ + SO₄²⁻ + 2NH₃·H₂O 	
$NH_4^+ + OH^- = NH_3 \cdot H_2O$	
Ответ правильный и полный, содержит все названные выше элементы	2
Правильно записан один элемент ответа	1
Все элементы ответа записаны неверно	0
Максимальный балл	2

Хлорид кремния(IV) поместили в воду. Выпавший при этом осадок отделили, а в оставшийся раствор внесли фосфид цинка. Образовавшийся при этом газ пропустили через раствор, содержащий дихромат натрия и серную кислоту. Полученную при этом соль хрома отделили, растворили в воде и к полученному раствору добавили раствор карбоната калия. Напишите уравнения четырёх описанных реакций.

Содержание верного ответа и указания по оцениванию	Баллы
(допускаются иные формулировки ответа, не искажающие его смысла)	
Вариант ответа	
Ответ включает в себя четыре уравнения возможных реакций,	
соответствующих описанным превращениям:	
1) SiCl ₄ + 3H ₂ O = H ₂ SiO ₃ + HCl	
2) Zn ₃ P ₂ + 6HCl = 3ZnCl ₂ + 2PH ₃ 3) 3PH ₃ + 4Na ₂ Cr ₂ O ₇ + 16H ₂ SO ₄ = 3H ₃ PO ₄ + 4Cr ₂ (SO ₄) ₃ + 4Na ₂ SO ₄ +	
16H ₂ O	
4) $Cr_2(SO_4)_3 + 3K_2CO_3 + 3H_2O = 2Cr(OH)_3 + 3CO_2 + 3K_2SO_4$	
Правильно записаны 4 уравнения реакций	4
Правильно записаны 3 уравнения реакций	3
Правильно записаны 2 уравнения реакций	2
Правильно записано 1 уравнение реакции	1
Все уравнения реакций записаны неверно	0
Максимальный балл	4

Напишите уравнения реакций, с помощью которых можно осуществить следующие превращения:

$$\Gamma$$
ексан $\to X_1 \xrightarrow{H_2 \text{ (избыток)}, Ni}$ циклогексан $\to X_2 \to X_3 \xrightarrow{K_2 Cr_2 O_7, H_2 SO_4, t^0}$

При написании уравнений реакций используйте структурные формулы органических веществ.

Содержание верного ответа и указания по оцениванию	Баллы
(допускаются иные формулировки ответа, не искажающие его смысла)	
Вариант ответа	
Ответ включает в себя пять уравнений реакций, соответствующих	
схеме превращений:	
$= H_3C - (CH_2)_4 - CH_3 \xrightarrow{t^0, Pt} $ + 4H ₂ + H ₅ M TPOEHT	
1) VK.CUIVIZEGEIUUBALLOV	
$+3 H_2 \xrightarrow{t^{\circ}, p, N_1} $	
$+ Cl_2 \xrightarrow{hv} $ — $-Cl + HCl$	
$-Cl + KOH_{BOJH p-p} \rightarrow \bigcirc -OH + KCl$	
$3 \left\langle -OH + K_2Cr_2O_7 + 4H_2SO_4 \rightarrow \right\rangle$	
$3 \longrightarrow 3 \longrightarrow O + K_2SO_4 + Cr_2(SO_4)_3 + 7H_2O$	
Правильно записаны 5 уравнений реакций	5
Правильно записаны 4 уравнения реакций	4
Правильно записаны 3 уравнения реакций	3
Правильно записаны 2 уравнения реакций	2
Правильно записано 1 уравнение реакции	1
Все уравнений реакций записаны неверно	0

Примечание. Допустимо использование структурных формул разного вида (развёрнутой, сокращённой, скелетной), однозначно отражающих порядок связи атомов и взаимное расположение заместителей и функциональных групп в молекуле органического вещества.

Максимальный балл

RNMNX

При нагревании образца карбоната бария часть вещества разложилась. При этом выделилось 1,12 л (н.у.) газа. Масса твёрдого остатка составила 27,35 г. К этому остатку добавили 73 г 30%-ного раствора соляной кислоты. Определите массовую долю кислоты в полученном растворе.

В ответе запишите уравнения реакций, которые указаны в условии задачи, и приведите все необходимые вычисления (указывайте единицы измерения искомых физических величин).

Содержание верного ответа и указания по оцениванию	Баллы
(допускаются иные формулировки ответа, не искажающие его смысла)	
Вариант ответа	
Записаны уравнения реакций:	
[1] BaCO3 = BaO + CO2	
[2] $BaCO_3 + 2HCl = BaCl_2 + CO_2 \uparrow + H_2O$	
[3] BaO + 2HCl = BaCl2 + H2O	
Приведены необходимые вычисления:	
$n(CO_2) = 1,12/22,4 = 0,05$ моль	
$n(BaO) = n(CO_2) = 0.05$ моль	
$m(BaO) = 0.05 \cdot 153 = 7.65 \Gamma$	
$m(BaCO_3 \text{ остаток}) = 27,35 - 7,65 = 19,7 \text{ г}$	
$n(BaCO_3 \text{ остаток}) = m/M = 19,7/197 = 0,1$ моль	6
	i.
$m(HCl$ в исходном p-pe) = $0.3 \cdot 73 = 21.9$ г	b)
$n(HCl \ в \ исходном \ p-pe) = 21,9/36,5 = 0,6 \ моль$	
$n(HC1 \text{ прореагировало}) = 2n(BaO) + 2n(BaCO_3) = 0,3 \text{ моль}$	
n (HCl B KOHE + HOM P-PE) = 0.6 - 0.3 = 0.3 МОЛЬ	
$m(HCl в p-pe) = 0,3 \cdot 36,5 = 10,95 г$	
$n(CO_2) = n(BaCO3 \text{ остаток}) = 0,1 \text{ моль}$	
$m(CO_2) = n \cdot M = 0.1 \cdot 44 = 4.4 \Gamma$	
m p-pa = $73 + 27,35 - 4,4 = 95,95 \Gamma$	
Определена массовая доля соли в полученном растворе:	
ω(HCl) = m(HCl) / m p-pa = 10,95/95,95= 0,114, или 11,4%	
Ответ правильный и полный, содержит следующие элементы:	4
• правильно записаны уравнения реакций, соответствующих	
условию задания;	/
• правильно произведены вычисления, в которых используются	
необходимые физические величины, заданные в условии	
задания;	

• продемонстрирована логически обоснованная взаимосвязь физических величин, на основании которых проводятся расчёты;	
• в соответствии с условием задания определена искомая физическая величина	
Правильно записаны три элемента ответа	3
Правильно записаны два элемента ответа	2
Правильно записан один элемент ответа	1
Все элементы ответа записаны неверно	0
Максимальный балл	4

Примечание. В случае, когда в ответе содержится ошибка в вычислениях в одном из трёх элементов (втором, третьем или четвёртом), которая привела к неверному ответу, оценка за выполнение задания снижается только на 1 балл.

При сгорании органического вещества А массой 3,03 г получили 3,136 л (н.у.) углекислого газа, 448 мл (н.у.) хлороводорода, 224 мл (н.у.) азота и 3,06 г воды. Вещество А образуется при действии хлорэтана на азотсодержащее вещество Б, молекула которого содержит четвертичный атом углерода. Напишите уравнение реакции получения вещества А из вещества Б и хлорэтана.

На основании данных условия задания:

- 1) проведите необходимые вычисления (указывайте единицы измерения искомых физических величин) и установите молекулярную формулу органического вещества А;
- 2) составьте возможную структурную формулу вещества А, которая однозначно отражает порядок связи атомов в его молекуле;
- 3) напишите уравнение реакции получения вещества А действием хлорэтана на соответствующее соединение Б (используйте структурные формулы органических веществ).

Содержание верного ответа и указания по оцениванию	Баллы
(допускаются иные формулировки ответа, не искажающие его смысла)	
Вариант ответа	
Элементы ответа:	7
Количество вещества продуктов сгорания:	
$n(CO_2) = 3{,}136 / 22{,}4 = 0{,}14$ моль; $n(C) = 0{,}14$ моль	1
n(HCl) = 0,448 / 22,4 = 0,02 моль; $n(Cl) = 0,02$ моль	
$n(N_2) = 0.224 / 22.4 = 0.01$ моль; $n(N) = 0.02$ моль	
$n(H_2O) = 3,06 / 18 = 0,17$ моль; $n(H) = 0,17 \cdot 2 + 0,02 = 0,36$ моль	
$m(O) = 3.03 - 0.14 \cdot 12 - 0.02 \cdot 35.5 - 0.02 \cdot 14 - 0.36 \cdot 1 = 0$	
Вещество А не содержит кислорода.	
Молекулярная формула вещества A: C ₇ H ₁₈ NCl	
Структурная формула вещества А:	
CH₃	
CH ₃ CH ₂ -NH ₂ -CH ₂ -CH ₃ CI	
ĊH₃	
Уравнение реакции получения вещества А:	
CH ₂	
CH ₃ -C-CH ₂ -NH ₂ + CH ₃ CH ₂ CI	/
CH-	
Cn ₃	
	2
Ответ правильный и полный, содержит следующие элементы:	3

r.	
• правильно произведены вычисления, необходимые для	
установления молекулярной формулы вещества, и записана	
молекулярная формула вещества; ваписана структурная формула органического вещества, которая отражает порядок связи и взаимное расположение заместителей и функциональных групп в молекуле в соответствии с условием задания; с использованием структурной формулы органического	
вещества записано уравнение реакции, на которую даётся	
указание в условии задания	
Правильно записаны два элемента ответа	2
Правильно записан один элемент ответа	1
Все элементы ответа записаны неверно	0
Максимальный балл	3

