

ВСЕРОССИЙСКАЯ ПРОВЕРОЧНАЯ РАБОТА

ФИЗИКА

11 КЛАСС

Инструкция по выполнению работы

Проверочная работа включает в себя 18 заданий. На выполнение работы по физике отводится 1 час 30 минут (90 минут).

Оформляйте ответы в тексте работы согласно инструкциям к заданиям. В случае записи неверного ответа зачеркните его и запишите рядом новый.

При выполнении работы разрешается использовать калькулятор и линейку.

При выполнении заданий Вы можете использовать черновик. Записи в черновике проверяться и оцениваться не будут.

Советуем выполнять задания в том порядке, в котором они даны. Для экономии времени пропускайте задание, которое не удаётся выполнить сразу, и переходите к следующему. Если после выполнения всей работы у Вас останется время, Вы сможете вернуться к пропущенным заданиям.

Баллы, полученные Вами за выполненные задания, суммируются. Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.

Желаем успеха!

Таблица для внесения баллов участника

Номер задания	2	3	4	5	6	7	8	:	!		:	!	:		Отметка за работу
Баллы															

Ниже приведены справочные данные, которые могут понадобиться Вам при выполнении работы.

Десятичные приставки

Наимено-	Обозначение	Множитель	Наимено-	Обозначение	Множитель
вание			вание		
гига	Γ	10 ⁹	санти	С	10^{-2}
мега	M	10^{6}	МИЛЛИ	M	10^{-3}
кило	К	10^{3}	микро	MK	10^{-6}
гекто	Γ	10^{2}	нано	Н	10^{-9}
деци	Д	10^{-1}	пико	П	10^{-12}

Константы	
ускорение свободного падения на Земле	$g = 10 \text{ m/c}^2$ $G = 6.7 \cdot 10^{-11} \text{ H} \cdot \text{m}^2/\text{kg}^2$
гравитационная постоянная	$G = 6.7 \cdot 10^{-11} \text{ H} \cdot \text{м}^2 / \text{кг}^2$
универсальная газовая постоянная	R = 8,31 Дж/(моль·К)
скорость света в вакууме	$c = 3 \cdot 10^8 \text{ m/c}$
коэффициент пропорциональности в законе Кулона	$k = 9 \cdot 10^9 \mathrm{H} \cdot \mathrm{m}^2 / \mathrm{K} \pi^2$
модуль заряда электрона	$e = 1,6 \cdot 10^{-19} $ Кл
(элементарный электрический заряд)	
постоянная Планка	$h = 6.6 \cdot 10^{-34} \text{Дж} \cdot \text{c}$

КОД	
-----	--

_		`
/	4	١
()
١.	1	- /
١.		

Прочитайте перечень понятий, с которыми Вы встречались в курсе физики:

радиоволны, удельная теплоёмкость, период полураспада, видимый свет, ультрафиолетовое излучение, электроёмкость.

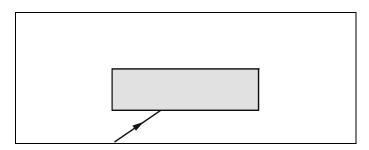
Разделите эти понятия на две группы по выбранному Вами признаку. Запишите в таблицу название каждой группы и понятия, входящие в эту группу.

	Название группы понятий	Перечень понятий
i		

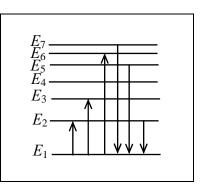
2

Выберите два верных утверждения о физических явлениях, величинах и закономерностях. Запишите в ответе их номера.

- 1) Центростремительная сила, действующая на материальную точку, всегда направлена по радиусу к центру дуги окружности и касательно к траектории лвижения.
- 2) Естественная конвекция в жидкости невозможна в состоянии невесомости.
- 3) Ориентация магнитной стрелки в пространстве какой-либо планеты свидетельствует о наличии у этой планеты магнитного поля.
- 4) Явление радуги обусловлено исключительно особыми свойствами солнечного света, поэтому её можно наблюдать не только на Земле, но и на Луне, и на Марсе.
- 5) Фотоэффект в металлах вызывается исключительно видимым светом, явление не возникает при действии ультрафиолетового излучения.


	Ответ:
3	Мяч, неподвижно лежавший на полу вагона поезда, движущегося относительно Земли, покатился назад против хода поезда. Как при этом изменилась скорость поезда относительно Земли?
	Ответ:

В таблице приведены температуры плавления и кипения некоторых веществ при нормальном атмосферном давлении.


Вещество	Температура	Температура
	плавления	кипения
Хлор	171 K	−34 °C
Спирт	159 K	78 °C
Ртуть	234 K	357 °C
Нафталин	353 K	217 °C

 Какое(-	ие) из данных	веществ	будет(-ут)	находиться	Вλ	жидком	состоянии	при	температуре
−30 °C 1	и нормальном	атмосфер	ном давле	нии?					
 Ответ:									

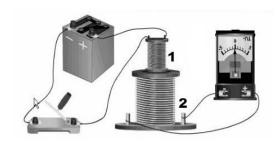
Из воздуха на стеклянную плоскопараллельную пластину падает луч света (см. рисунок, вид сбоку). Изобразите примерный ход луча в пластине и после выхода света из стекла в воздух.

На рисунке представлена диаграмма нижних энергетических уровней атома. Какой из отмеченных стрелками переходов энергетическими уровнями сопровождается поглощением кванта минимальной длины волны?

 $\overline{7}$

В начале XX в. пожарный однажды спрыгнул с высоты 8-го этажа на батут без травм. Как изменились кинетическая энергия пожарного и потенциальная энергия деформации сетки за время от начала касания сетки до максимального её прогиба?

Для каждой величины определите соответствующий характер изменения:


- 1) увеличилась
- 2) уменьшилась
- 3) не изменилась

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Кинетическая энергия пожарного	Потенциальная энергия деформации сетки

8

В катушку 2, замкнутую на гальванометр, вносят нижний торец катушки 1, подключённой к источнику тока (рис. 1). При движении катушки 1 в катушке 2 наблюдают возникновение индукционного тока, который фиксируется гальванометром. Изменяя направление и скорость движения катушки 1, получают график зависимости индукционного тока в катушке 2 от времени (рис. 2).

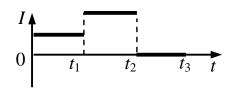


Рис.1

Рис. 2

Выберите два верных утверждения, соответствующих данным графика. Запишите в ответе их номера.

- 1) В промежутке времени от 0 до t_1 катушка 1 движется относительно катушки 2 равноускоренно.
- 2) В промежутке времени от t_1 до t_2 в катушке 2 наблюдается явление электромагнитной индукции.
- 3) В промежутке времени от t_1 до t_2 катушка 1 движется относительно катушки 2 с большей скоростью, чем в промежутке от 0 до t_1 .
- 4) В промежутке времени от t_2 до t_3 катушка 1 движется относительно катушки 2 равномерно.
- 5) В промежутке времени от t_2 до t_3 в катушке 2 наблюдается явление электромагнитной индукции.

Ответ:		

КОД	
-----	--

9

В дачном домике линия электропередачи для розеток оснащена автоматическим выключателем, который размыкает линию, если сила тока в ней превышает $16~\mathrm{A.}$ Напряжение электрической сети $-220~\mathrm{B.}$

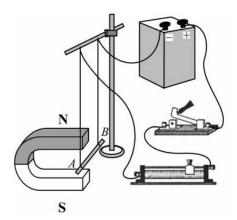
В таблице представлены электрические приборы, используемые в доме, и потребляемая ими мощность.

Электрические приборы	Потребляемая мощность, Вт
Телевизор	400
Электрический обогреватель	2000
Пылесос	650
Холодильник	180
СВЧ-печь	800
Электрический чайник	2000
Электрический утюг	1500

Можно ли при включённом электрическом чайнике и холодильнике дополнительно включить телевизор?

Запишите решение и ответ.

Решение:
Ответ:

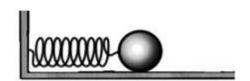

Ученик исследовал зависимость силы Архимеда от объёма погружённой в жидкость части тела. В таблице представлены результаты измерений объёма погружённой части тела и силы Архимеда с учётом погрешностей измерений.

№ опыта	Объём погружённой части	Сила Архимеда, Н
	тела, см	
1	50,0 ± 0,5	$0,45 \pm 0,05$
2	$80,0 \pm 0,5$	$0,70 \pm 0,05$
3	100.0 ± 0.5	0.90 ± 0.05

Какова приблизительно пло	тность жидкости, в которую опускали тело?
Ответ:	_ кг/м ³ .

(11)

Учитель на уроке собрал следующую установку: прямой проводник с током поместил между полюсами дугообразного магнита (см. рисунок). При замыкании цепи можно было наблюдать, как проводник втягивается в область магнита. При переключении полюсов источника тока проводник с током выталкивался из области магнита.


С какой целью был проведён данный опыт?

Ответ:			

Вам необходимо исследовать, как меняется частота колебаний горизонтального пружинного маятника при изменении массы груза. Имеется следующее оборудование (см. рисунок):

- секундомер электронный;
- набор из трёх пружин жёсткостью 50 H/м, $100~{\rm H/m}$ и $200~{\rm H/m}$;
- набор из трёх шариков массами 0,5 кг, 0,7 кг и 0,9 кг (силой трения шариков о горизонтальную поверхность можно пренебречь);
- рамка для крепления маятника.

В ответе:

- 1. Опишите экспериментальную установку.
- 2. Опишите порядок действий при проведении исследования.

Ответ:	_	_		

13

Установите соответствие между устройствами и видами электрического разряда, которые используются в этих устройствах. Для каждого устройства из первого столбца подберите соответствующее название электрического разряда из второго столбца.

искровой

УСТРОЙСТВА

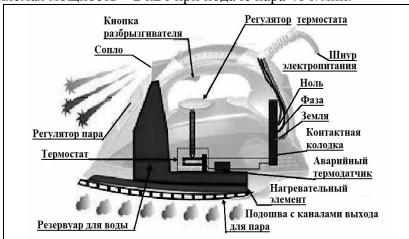
ВИДЫ ЭЛЕКТРИЧЕСКОГО РАЗРЯДА

- A) светящиеся трубки рекламы, заполненные неоном, аргоном
- 2) тлеющий

1)

- Б) двигатель внутреннего сгорания (зажигание горючей смеси), бытовые «зажигалки»
- 3) коронный
- 4) дуговой

Запишите в таблицу выбранные цифры под соответствующими буквами.


Ответ:

Α	Б

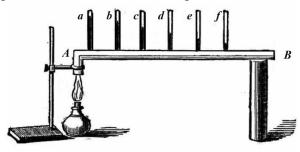
Прочитайте фрагмент технического описания электрического утюга и выполните задания 14 и 15.

Электрический утюг

В электрическом утюге есть несколько основных узлов. Нагревательный элемент выполнен в виде нихромовой спирали внутри керамических колец. Электрический ток нагревает спираль, а от неё тепло передаётся гладкой подошве из нержавеющей стали, поверхность которой равномерно прогревается до температуры, задаваемой термостатом. Термостат устанавливает различный режим глажения для материалов – от нейлона до льна. Утюг оснащён системой подачи пара, которой управляют с помощью кнопок на ручке утюга: одна отвечает за подачу струи горячего влажного воздуха через отверстия в подошве; другая – за разбрызгивание воды. Утюг рассчитан на напряжение 220 В, потребляемая мощность – 2 кВт при подаче пара 40 г/мин.

Правила эксплуатации

- 1. Необходимо включать утюг в электрическую сеть с заземлением.
- 2. Запрещается включать утюг в сеть влажными руками.
- 3. При перерывах в работе утюг необходимо ставить на термоизоляционную подставку.
- 4. Необходимо следить за тем, чтобы горячая подошва утюга не касалась электрического шнура.
- 5. При глажке не следует обильно смачивать материал водой.


(14)	Почему спираль утюга изготавливают из нихрома, который обладает высоким удельным электрическим сопротивлением?
	Ответ:
15	Почему необходимо включать утюг в электрическую сеть с заземлением?
	Ответ:

Прочитайте текст и выполните задания 16, 17 и 18.

Как исследовали теплопроводность материалов

То, что различные тела обладают т.е. разной теплопроводностью, было известно давно, однако инструментальные исследования начались лишь в конце XVIII в. Ж.-Б.-Фурье предложил способ, показанный на рисунке: в стержне AB, один конец которого нагревался, на равном расстоянии высверливались небольшие отверстия под термометры $(a, b, \dots f)$. Вначале температура каждого термометра поднималась, но затем

разной способностью проводить тепло,

подъём прекращался, устанавливалось стационарное распределение температуры вдоль стержня. *Лучшей теплопроводностью* обладал тот материал, для которого различие между показаниями двух соседних термометров было *наименьшее*. Используя эту идею, Г. Видеман и Р. Франц получили данные о теплопроводности металлов и сплавов, сопоставив их с электропроводностью. Результаты опытов в относительных единицах представлены в табл. 1 (наилучшая проводимость – у серебра; наихудшая – у висмута).

Наряду с теплофизическими свойствами проводников, изучались и аналогичные свойства теплоизоляторов. Граф Б.-Т. Румфорд исследовал теплопроводность материалов, используемых для одежды. Он помещал термометр в стеклянную трубку с окончанием в виде сферы так, чтобы шарик термометра был в её центре. Пространство между стеклянной сферой и термометром заполнялось исследуемой материей. Вся трубка сначала помещалась в горячую воду, прогревалась до тех пор, пока не устанавливалась неизменная температура, затем прибор помещался в смесь толчёного льда и соли и охлаждался. В опытах измерялось время понижения температуры для каждого материала на 135 °F (57,2 °C). Данные, полученные Румфордом, представлены в табл. 2.

КОД

Наряду с экспериментальной базой в XIX в. были заложены и основы теории теплопроводности.

Таблица 1. Проводники				
	Провод	Температура		
Металл	теплоты	электр.	плавления, °С	
	Относ	диницы		
Серебро	100 100 961			
Медь	73	74	1084	
Золото	59	53	1063	
Олово	23	15	232	
Железо	13	12	1539	
Свинец	11	9	327	
Платина	10	8	1768	
Висмут	2	2	271	

Таблица 2. Теплоизоляторы				
Материал		Время		
		мин.	c	
Шёлк	кручёный	15	17	
шелк	сырец	21	04	
Лён		17	12	
Хлопок-сырец		17	26	
Овечья шерсть		18	38	
Бобровый мех		21	36	
Гагачий пух		21	45	
Заячий мех		21	52	

16)	Вставьте в предложение пропущенные слова, используя информацию из текста.
	Исследуя железа и свинца на одной и той же установке Фурье, можно видеть, что соседние термометры показывают разность температур в случае изучения свинца.
17)	БТ. Румфорд наряду с материалами для одежды исследовал и другие теплоизоляторы. Стеклянную колбу с горячим маслом в одном случае обложили хлопком-сырцом (ватой), а в другом случае — древесной сажей слоем такой же толщины. Для сажи он получил время понижения температуры 18 мин. 37 с. Какой из этих материалов обладает большей теплопроводностью?
	Ответ:
18	Ученик утверждает, что теплопроводность металлов тем выше, чем ниже их температура плавления. У серебра, например, температура плавления ниже, чем у железа, а теплопроводность выше. Правомерно ли такое утверждение? С какой характеристикой металлов согласуется их теплопроводность?
	Ответ: