Система оценивания проверочной работы

Правильный ответ на каждое из заданий 1, 3-6, 8 оценивается 1 баллом.

Полный правильный ответ на задание 9 оценивается 2 баллами. Если в ответе допущена одна ошибка (одно из чисел не записано или записано неправильно), выставляется 1 балл; если оба числа записаны неправильно или не записаны — 0 баллов.

№ задания	Ответ
1	0,1
3	500
4	6
5	8
6	400
8	1
9	1,4; 1,08

Решения и указания к оцениванию заданий 2, 7, 10 и 11

Решение	
Плотность. $\rho = m/V$, где m — масса тела, V — его объём.	
Указания к оцениванию	
Приведён полностью правильный ответ на оба вопроса, содержащий правильное	2
название характеристики, написание формулы и правильное название входящих в неё величин.	
В решении имеется один или несколько из следующих недостатков:	1
Приведено только правильное написание формулы без описания входящих в неё	
величин.	
ИЛИ	
Приведена только правильная формула без описания входящих в неё величин. И (ИЛИ)	
В решении дан ответ, в котором имеется неточность в записи формулы или в описании входящих в неё величин.	
Все случаи решения, которые не соответствуют вышеуказанным критериям выставления оценок в 1 или 2 балла.	0
Максимальный балл	2

7

Решение

Жёсткость пружины при увеличении числа витков в ней уменьшается (вариант: обратно пропорциональна количеству витков). При увеличении числа витков растёт растяжение пружины, следовательно, жёсткость уменьшается (увеличение числа витков в 2 раза приводит к увеличению растяжения в 2 раза, т.е. жёсткость обратно пропорциональна количеству витков).

Remi reers surfaces).			
Указания к оцениванию			
Приведён полностью правильный ответ на вопрос и дано правильное объяснение.			
В решении имеется один или несколько из следующих недостатков:			
Приведён только правильный ответ на вопрос без объяснения.			
ИЛИ			
Приведено правильное объяснение, но правильный ответ на вопрос дан лишь			
частично, либо ответ в явном виде отсутствует.			
Й (ИЛИ)			
В решении дан правильный ответ на вопрос, но в объяснении имеется неточность.			
Все случаи решения, которые не соответствуют вышеуказанным критериям	0		
выставления оценок в 1 или 2 балла.			
Максимальный балл	2		

Решение

- 1) Из графика следует, что поезд двигался по мосту от 30 до 60 с, то есть 30 секунд.
- 2) Скорость поезда в этот промежуток времени равнялась v=54 км/ч = 15 м/с. За это время локомотив поезда прошёл путь $S=v\cdot t=450$ м. Это расстояние складывается из длины моста и длины состава. Так как длина поезда равна длине моста, длина поезда равна L=225 м.
- 3) Определим количество вагонов в поезде, учитывая, что длина каждого вагона и локомотива l=15 м. Тогда N=(L/l)-1=14 вагонов

Допускается другая формулировка рассуждений.

Ответ: 1) 30 с; 2) 450 м; 3) 14

Указания к оцениванию			
Приведено полное решение, включающее следующие элементы:			
I) записаны положения теории, физические законы, закономерности, формулы			
и т.п., применение которых необходимо для решения задачи выбранным способом			
(в данном случае: связь между пройденным путём, временем движения и			
скоростью);			
II) проведены нужные рассуждения, верно осуществлена работа с графиками,			
схемами, таблицами (при необходимости), сделаны необходимые математические			
преобразования и расчёты, приводящие к правильному числовому ответу			
(допускается решение «по частям» с промежуточными вычислениями; часть			
промежуточных вычислений может быть проведена «в уме»; задача может			
решаться как в общем виде, так и путём проведения вычислений непосредственно			
с заданными в условии численными значениями);			
III) представлен правильный численный ответ на все три вопроса задачи			
с указанием единиц измерения искомой величины.			
Приведено полное верное решение (I, II) и дан правильный ответ (III) только для	2		
двух пунктов задачи			
Приведено полное верное решение (I, II) и дан правильный ответ (III) только для	1		
одного пункта задачи			
Все случаи решения, которые не соответствуют вышеуказанным критериям	0		
выставления оценок в 1, 2 или 3 балла			
Максимальный балл	3		

11

Решение

1) Непосредственным считыванием получим $t \approx 22^{\circ}$ С

Примечание: цена деления по обеим шкалам термометра составляет 2° , поэтому погрешность считывания температуры не превышает 1° .

2) Выберем какие-нибудь опорные точки на одной из шкал, например, $-20~^{\circ}$ С и $+20~^{\circ}$ С. Этим точкам соответствуют температуры около $-4~^{\circ}$ F и $68~^{\circ}$ F. Значит, одному градусу Цельсия

соответствуют $\frac{68-(-4)}{20-(-20)}$ = 1,8 градуса Фаренгейта, следовательно, 35°C = 1,8×35°F = 63°F

3) 0 °C соответствуют примерно 32 °F, поэтому

$$462^{\circ} \text{C} = 32^{\circ} \text{F} + 462^{\circ} \text{C} \cdot \frac{9^{\circ} \text{F}}{5^{\circ} \text{C}} = 863, 6^{\circ} \text{F} \approx 864^{\circ} \text{F}$$

Допускается другая формулировка рассуждений и отклонение числовых ответов из-за выбора иных опорных точек при соотнесении шкал.

Otbet: 1) $t \approx 22^{\circ}\text{C}$; 2) 63°F; 3) 864°F

Указания к оцениванию	
Приведено полное решение, включающее следующие элементы:	
I) записаны положения теории, физические законы, закономерности, формулы и	
т.п., применение которых необходимо для решения задачи выбранным способом	
(в данном случае: определение показаний и цены деления прибора;	
продемонстрировано умение определять величину при её прямом измерении);	
II) проведены нужные рассуждения, верно осуществлена работа с графиками,	
схемами, таблицами (при необходимости), сделаны необходимые математические	
преобразования и расчёты, приводящие к правильному числовому ответу	
(допускается решение «по частям» с промежуточными вычислениями; часть	
промежуточных вычислений может быть проведена «в уме»; задача может	
решаться как в общем виде, так и путём проведения вычислений непосредственно	
с заданными в условии численными значениями);	
III) представлен правильный численный ответ на все три вопроса задачи	
с указанием единиц измерения искомой величины.	
Приведено полное верное решение (I, II) и дан правильный ответ (III) только для	2
двух пунктов задачи	
Приведено полное верное решение (I, II) и дан правильный ответ (III) только для	1
одного пункта задачи	
Все случаи решения, которые не соответствуют вышеуказанным критериям	0
выставления оценок в 1, 2 или 3 балла	
Максимальный балл	3

Система оценивания выполнения всей работы

Максимальный балл за выполнение работы – 18.

Рекомендуемая таблица перевода баллов в отметки по пятибалльной шкале

Отметка по пятибалльной шкале	«2»	«3»	«4»	«5»
Первичные баллы	0-4	5–7	8–10	11–18