

# ВСЕРОССИЙСКАЯ ПРОВЕРОЧНАЯ РАБОТА

### **ХИМИЯ**

#### 11 КЛАСС

## Вариант № 6

### Инструкция по выполнению работы

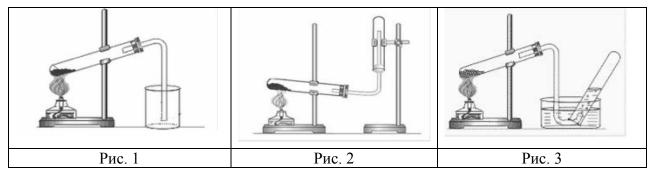
Проверочная работа включает в себя 15 заданий. На выполнение работы по химии отводится 1 час 30 минут (90 минут).

Оформляйте ответы в тексте работы согласно инструкциям к заданиям. В случае записи неверного ответа зачеркните его и запишите рядом новый.

При выполнении работы разрешается использовать следующие дополнительные материалы:

- Периодическая система химических элементов Д.И. Менделеева;
- таблица растворимости солей, кислот и оснований в воде;
- электрохимический ряд напряжений металлов;
- непрограммируемый калькулятор.

При выполнении заданий Вы можете использовать черновик. Записи в черновике проверяться и оцениваться не будут.


Советуем выполнять задания в том порядке, в котором они даны. Для экономии времени пропускайте задание, которое не удаётся выполнить сразу, и переходите к следующему. Если после выполнения всей работы у Вас останется время, Вы сможете вернуться к пропущенным заданиям.

Баллы, полученные Вами за выполненные задания, суммируются. Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.

Желаем успеха!



Из курса химии Вам известно, что при получении газообразных веществ в лаборатории собирать получаемый газ можно двумя способами: вытеснением воды и вытеснением воздуха. На рисунках 1–3 изображены приборы для получения и собирания различных газов.



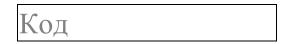
Известно, что кислород — газ тяжелее воздуха и плохо растворим в воде. Какие из приведённых на рисунках методов можно использовать для собирания кислорода? Укажите какое свойство кислорода учитывается при использовании каждого способа.

Ответ запишите в таблицу.

| Метод собирания кислорода | Номер рисунка | Свойство кислорода |
|---------------------------|---------------|--------------------|
| Вытеснение воздуха        |               |                    |
| Вытеснение воды           |               |                    |

2

На рисунке изображена схема распределения электронов по энергетическим уровням атома некоторого химического элемента.


Рассмотрите предложенную схему и выполните следующие задания:

- 1) запишите в таблицу символ химического элемента, которому соответствует данная схема;
- 2) запишите номер периода и номер группы в Периодической системе химических элементов Д.И. Менделеева, в которых расположен этот элемент;
- 3) определите, к металлам или неметаллам относится простое вещество, которое образует этот элемент.

Ответ запишите в таблицу.

| Ответ |
|-------|
|       |
|       |
|       |
|       |
|       |
|       |

| Символ химического | №       | №      | Металл/  |
|--------------------|---------|--------|----------|
| элемента           | периода | группы | неметалл |
|                    |         |        |          |



| 3 ) | Периодическая система химических элементов Д.И. Менделеева – богатое хранилище     |
|-----|------------------------------------------------------------------------------------|
|     | информации о химических элементах, их свойствах и свойствах их соединений          |
|     | Так, например, известно, что с увеличением порядкового номера химического элемента |
|     | кислотные свойства высших гидроксидов в периодах усиливаются, а в группах          |
|     | ослабевают.                                                                        |

Учитывая эти закономерности, расположите в порядке усиления кислотных свойств их высших гидроксидов следующие элементы: углерод, бор, бериллий, азот. В ответе запишите символы элементов в нужной последовательности.

| : |        |  |
|---|--------|--|
|   | $\sim$ |  |
|   | Ответ: |  |
|   | CHREL  |  |
| : | OIDCI. |  |
|   |        |  |

4

В приведённой ниже таблице представлены примеры формул веществ с ковалентной и ионной химической связью.

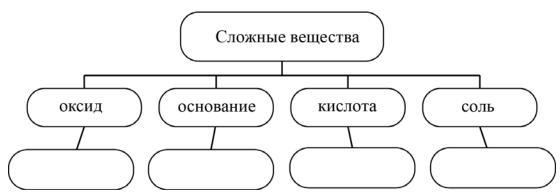
| Примеры формул веществ          |                            |  |
|---------------------------------|----------------------------|--|
| С ковалентной химической связью | С ионной химической связью |  |
| • CO <sub>2</sub> ;             | • K <sub>2</sub> S;        |  |
| • NH <sub>3</sub> ;             | • Na <sub>2</sub> O;       |  |
| • F <sub>2</sub>                | • BaCl <sub>2</sub>        |  |

Используя данную информацию, определите вид химической связи:

- 1) в бромиде магния (MgBr<sub>2</sub>);
- 2) в молекуле кислорода (О2).

Запишите ответ в отведённом месте:

| <ol> <li>В бромиде магния</li></ol> |  |
|-------------------------------------|--|
| <br>2) В кислороде                  |  |


| Кол |  |  |
|-----|--|--|
| ТОД |  |  |

Для выполнения заданий 5–7 необходимо использовать информацию, которая содержится в приведённом ниже тексте.

Сульфит натрия  $(Na_2SO_3)$  — это синтетически созданный консервант, применяющийся в пищевой, фармацевтической и лёгкой промышленности. На этикетках пищевых продуктов сульфит натрия обозначается как E221. E221 незаменим для производства в большом объёме мармелада, зефира, варенья, пастилы, повидла, джема, соков и пюре из фруктов и ягод, ягодных полуфабрикатов, овощного пюре.

Получить сульфит натрия можно в результате реакции сернистого газа  $(SO_2)$  с раствором гидроксида натрия (NaOH). При действии раствора сильных кислот, например серной кислоты  $(H_2SO_4)$ , на сульфит натрия выделяется сернистый газ, который относят к веществам третьего класса опасности для человеческого организма.

Сложные неорганические вещества можно классифицировать по четырём группам, как показано на схеме. В эту схему для каждой из четырёх групп впишите по одной химической формуле веществ из числа тех, о которых говорится в приведённом выше тексте.



| 6 | 1. Составьте молекулярное уравнение реакции получения сульфита натрия.             |
|---|------------------------------------------------------------------------------------|
|   | Ответ:                                                                             |
|   | 2. Укажите, происходит ли в ходе этой реакции изменение степеней окисления атомов. |
|   | Ответ:                                                                             |
| 7 | 1. Составьте молекулярное уравнение реакции сульфита натрия с серной кислотой,     |
|   | о которой говорилось в тексте.                                                     |
|   | Ответ:                                                                             |
|   | 2. Укажите признак, который наблюдается при протекании этой реакции.               |
|   | Ответ:                                                                             |
|   |                                                                                    |

При исследовании воды из местного колодца в ней были обнаружены следующие катионы металлов:  $Fe^{3+}$ ,  $Na^+$ ,  $K^+$ . Наличие одного из перечисленных ионов было доказано в результате добавления к воде раствора  $Ba(OH)_2$ .

1. Какое изменение наблюдается при проведении описанного опыта? (Концентрация веществ достаточна для проведения анализа.)

Ответ:

2. Запишите сокращённое ионное уравнение протекающей химической реакции.

Ответ:

(9) Дана схема окислительно-восстановительной реакции:

$$H_2S + HIO_3 \rightarrow S + I_2 + H_2O$$

1. Составьте электронный баланс этой реакции.

Ответ:

2. Укажите окислитель и восстановитель.

Ответ:

3. Расставьте коэффициенты и запишите получившееся уравнение реакции.

Ответ:

(10) Дана схема превращений.

$$P_2O_5 \xrightarrow{H_2O} X \longrightarrow K_3PO_4 \longrightarrow Ca_3(PO_4)_2$$

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения.

1)\_\_\_\_\_

2)\_\_\_\_\_

3)\_\_\_\_\_



Для выполнения заданий 11–13 используйте вещества, структурные формулы которых приведены ниже:

1) 
$$CH_3$$
— $C$ — $CH_2$ — $CH_3$ 

1) 
$$CH_{\overline{3}}$$
  $CH_{\overline{2}}$   $CH_{\overline{2}}$   $CH_{\overline{3}}$   $CH_{\overline{2}}$   $C$ 

3) 
$$CH \equiv C - CH_2 - CH_3$$

4) 
$$CH_3$$
— $CH_2$ — $CH$ = $CH_2$ 

4) 
$$CH_{3}$$
— $CH_{2}$ 

11 Из приведённого перечня выберите вещества, которые соответствуют указанным в таблице классам/группам органических соединений. Запишите номера этих веществ в соответствующие графы таблицы.

| Алкен | Альдегид |  |
|-------|----------|--|
|       |          |  |
|       |          |  |

В предложенные схемы химических реакций впишите структурные формулы пропущенных веществ, выбрав их из приведённого выше перечня, и расставьте коэффициенты.

1) 
$$+ H_2 \xrightarrow{Pt} CH_3 - CH - CH_2 - CH_3$$

Бутанол-2 используют как растворитель в лакокрасочной промышленности. Бутанол-2 можно получить в соответствии с приведённой схемой превращений:

$$CH_{\overline{3}}CH_{\overline{2}}-CH_{\overline{2}}-CH_{\overline{2}}-CH_{\overline{2}}-CH_{\overline{2}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{2}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline{3}}-CH_{\overline$$

Выберите из предложенного перечня вещество Х и запишите уравнения двух реакций, с помощью которых можно осуществить эти превращения. При написании уравнений реакций используйте структурные формулы органических веществ.

1)\_\_\_\_\_

Запишите название вещества Х.

| Код |
|-----|
|-----|

| / |    | `  |
|---|----|----|
|   | 14 | ļ  |
|   |    | ٠. |

Одним из важных понятий в экологии и химии является «предельно допустимая концентрация» (ПДК). ПДК — это такая концентрация вредного вещества в окружающей среде, присутствуя в которой постоянно, данное вещество не оказывает в течение всей жизни прямого или косвенного неблагоприятного влияния на настоящее или будущее поколение, не снижает работоспособности человека, не ухудшает его самочувствия и условий жизни.

ПДК акролеина в воздухе рабочей зоны составляет  $0.2 \text{ мг/м}^3$ .

В рабочем помещении столовой площадью 25 м<sup>2</sup> и высотой потолка 2,8 м в процессе длительной тепловой обработки жира в воздух выделилось 21 мг акролеина. Определите и подтвердите расчётами, превышает ли концентрация акролеина в воздухе данного помещения значение ПДК. Предложите способ, позволяющий снизить концентрацию акролеина в помещении.

| -      |                                                                                                                                                                                                                                                                                                           |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| _      |                                                                                                                                                                                                                                                                                                           |
| Л<br>К | Для приготовления маринадов вместо уксуса можно использовать 0,25%-ный рапимонной кислоты. Для приготовления маринада взяли 1 чайную ложку (5 г) лим кислоты. Рассчитайте, какую массу раствора указанной концентрации при этом поли какую массу воды использовали для приготовления этого маринада. Запи |
|        | н какую массу воды использовали для приготовления этого маринада. Зап<br>подробное решение задачи.                                                                                                                                                                                                        |