Пробный ЕГЭ 2018 по физике №2 «ЕГЭ 100 БАЛЛОВ»

Пояснение – Мингалеева Алсу Эльфритовна

Задание 1.

Решение:

$$X = V_0 t + \frac{at^2}{2} + X_0 \quad V_x = -10 + 3t$$

$$V_0 = -10 \text{ m/c} \qquad a = 3 \text{ m/c}^2$$

$$X = -10t + \frac{3}{2}t^2 + 0 = -10t + \frac{3}{2}t^2$$

$$X(5) = -10 \cdot + \frac{3}{2}15^2 = 187,5 \text{ m}$$

Ответ: 187,5

Задание 2.

Решение:

Поскольку брусок покоится, равнодействующая всех сил, действующих на него, равна нулю. На брусок действую три силы: трения, сила тяжести и сила реакции опоры, т.е. $N + F_{mp} + mg = 0$, откуда получаем, что $N + F_{mp} = -mg$

Следовательно, модуль равнодействующей сил равен $|N+F_{mp}|=mg=30{\rm H}.$

Ответ: 30

Задание 3.

Решение:

По закону всемирного тяготения: $F = Gm^2/R^2$ (в данном случае массы равны)

Сила всемирного тяготения между ними примерно равна

Значит,
$$F = 6.67 * 10^{-11} = 7*10^{-11}$$
Н

Ответ: $0.7*10^{-10}\,\mathrm{H}$

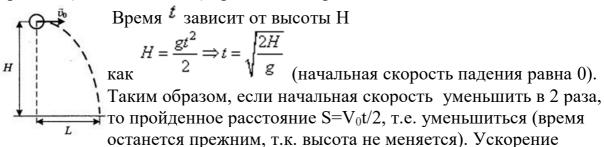
Задание 4.

Решение:

Ответ: 9,7

Задание 5.

Решение:

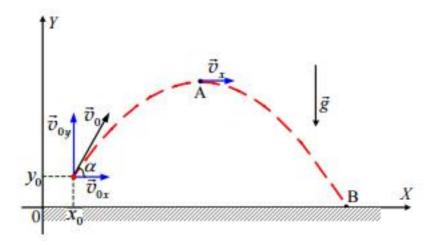

- 1) Сила тяги по модулю равна силе трения скольжения- **Неверно**. Чтобы тело двигалось равномерно сила тяги должна равнятся сумме сил: Fтяг= mgsina+Fтр.
- 2) Модуль вектора силы трения пропорционален силе нормального давления Верно. Векторная сила трения зависит от силы нормального давления: $F_{\text{тр}} = \mu \, F_{\text{норм}}$
- 3) Равнодействующая всех сил зависит от угла наклонной плоскости **Неверно.** Не зависит при равномерном движении
- 4) Модуль вектора силы трения не зависит от площади поверхности бруска
 — Верно. Если взглянуть на формулу: F = μ N, то мы видим, что
 векторная сила трения никак не зависит от площади поверхности бруска
- 5) Модуль вектора силы трения обратно пропорционален площади поверхности бруска **Неверно**. Так как векторная сила трения вообще не зависит от площади поверхности бруска.

Ответ: 24

Задание 6.

Решение:

Тело, брошенное горизонтально с высоты H движется в горизонтальном направлении равномерно (без ускорения) со скоростью $v_x = v_0$ и за время t (пока оно падает) преодолевает расстояние $S=V_0t$.


движения отсутствует, т.е. равно 0, и, следовательно, не изменится.

Ответ: 23

Задание 7.

Решение.

Рассмотрим динамику движения тела, брошенного под углом α к горизонту с начальной скоростью ν_0 . В задаче нас интересует вертикальное движение тела.

Из рисунка видно, что проекция начальной скорости на ось Оу равна

$$v_{0y} = v_0 \sin \alpha$$

А-3 скорость V тела в проекции на ось У при движении вверх находится по формуле $V=V_0+at => V=V_{0y}-gt$

Б-1 максимальная высота подъема находится по формуле $H_{max}=V_{\kappa}^{\ 2}-V_{0y}^{\ 2}/-2g=0-(V_{0y})^2/-2g=(V_{0y})^2/2g$

Ответ: 31

Задание 8.

Решение:

По формуле количества теплоты при нагревании Q=cm(t2-t1) находим удельную теплоемкость молибдена: c = Q/m(t2-t1) = 24 Дж/(0,096 кг*1K) = 250 Дж/(кг*K)

96г перевели в килограммы 0,096 кг

Ответ: 250

Задание 9.

Решение:

$$\Delta U = \frac{3}{2} \nu R \Delta T = \frac{3}{2} A = 1246,5$$
Дж. $Q = \Delta U + A = 2077$ Дж.

Ответ: 2077

Задание 10.

Решение:

300кПа=300000Па

Работу совершаемую газом (расширяется "сам") + работу совершаемую над газом (когда сжимаем) находим по формуле: $A=pV=300000\Pi a*(1-3)\pi=-600000 \ Дж=-600 \ к \ Дж$

Ответ: -600

Задание 11.

- 1) Температура газа увеличилась в 2 раза. Неверно. Так как температура и давление газа изменяются прямо пропорционально, а не наоборот.
- 2) Объем газа остается неизменным Верно. Так как постоянная концентрация молекул этого газа является константой
- 3) Температура газа уменьшилась в 2 раза. Верно. Так как температура и давление газа изменяются прямо пропорционально.
- 4) Объем газа увеличился в 2 раза. Неверно, потому что m/v должна оставаться неизменной по условию.
- 5) Количество молекул газа увеличилось в 2 раза Неверно, так же как и в других пунктах, R/M должна оставаться неизменной по условию.

Ответ: 23

Задание 12.

Решение:

Если понизить температуру нагревателя при неизменной температуре холодильника, КПД идеальной тепловой машины уменьшится:

$$\eta = 1 - \frac{T_{\text{хол}}}{T_{\text{нагр}}} \cdot 100\%$$
. КПД связано с работой газа и количеством

теплоты полученным газом за цикл, соотношением: $\eta = \overline{Q_1} \cdot 100\%$. Таким образом, поскольку при понижении температуры нагревателя количество теплоты, получаемое газом от неё за цикл, тоже уменьшится.

Ответ: 22

Задание 13.

Решение:

Одноименные заряды отталкиваются. Следовательно, на шарике располагается отрицательный заряд.

Ответ: 2

Задание 14.

Напряжение при последовательном соединении равна $U_{\text{общ}}=U_1+U_2$. Сопротивление $R_2>R_1$ в 4 раза, тогда $U_2=4U_1$ (так как, мы знаем- чем больше сопротивление, тем больше напряжения в цепи). Следовательно подставляем под формулу $U_{\text{общ}}=U_1+U_2=U_1+4U_1=5U_1$, получаем $U_{\text{общ}}=5*8=40$, $U_2=40-8=32B$

Ответ: 32

Задание 15.

Решение:

$$C = \frac{\varepsilon_0 a^2}{d}; \quad U = \frac{q}{C} = \frac{qd}{\varepsilon_0 a^2} = \frac{10^{-3} \text{ M} \cdot 10^{-9} \text{ Km} \cdot 10^{-3} \text{ M}}{8,85 \cdot 10^{-12} \text{ } \Phi \text{ / M} \cdot 0,1^2 \text{ M}^2} \approx 11,3 \text{ B}$$

Ответ: 11,3

Залание 16.

Решение:

При увеличении частоты падающего света в 2 раза, увеличится и энергия Φ отона: E_{Φ} отон = hv. , следовательно длина волны уменьшиться в столько

же раз $E_{
m фотон}=rac{hc}{\lambda}.$ При этом максимальная кинетическая энергия фотоэлектронов была отлична от нуля. При увеличении частоты света в 2 раза, энергия фотонов также возрастает в 2 раза. Следовательно, имеем $\frac{E_{\text{кин2}}}{E_{\text{кин1}}} = \frac{2hv - A}{hv - A} > 2.$ Таким образом, максимальная кинетическая энергия

фотоэлектронов увеличилась более чем в 2 раза.

Ответ: 34

Залание 17. Решение:

Сопротивление проводника (проволочного резистора) равно $R = \rho l / S$. где $^{\rho}$ - удельное сопротивление проводника; l - длина проводника; S поперечное сечение. Соответственно, при уменьшении длины l в 4 раза, сопротивление также уменьшится в 4 раза. Тепловую мощность можно определить по формуле: P=IU и U=IR, следовательно $P=I^2R$. Таким образом получаем, что тепловая мощность не изменится.

Ответ: 32

Задание 18.

Решение:

Радиус окружности при движении заряженной частицы в перпендикулярном магнитном поле определяется по формуле: R= mV/qB. А период обращения по окружности заряженной частицы в перпендикулярном магнитном поле по формуле: $T=2\pi m/qB$.

Ответ:12

Задание 19.

Число протонов равно числу электронов: 92 Число нейтронов=238-92=146

Ответ: 92146

Задание 20.

Согласно закону радиоактивного распада, от первоначального количества радиоактивных атомов $N_0 = 4 \cdot 10^{24}$ останется $1*10^{24}$

$$N=N_0/2^{-t/T}$$
 , следовательно $1*10^{24}=4*10^{24}*2^{-t/164}$ $2^{-t/T}=2^{-t/164}$, тогда $t=328$ суток.

Ответ: 328

Задание 21.

Решение:

Число нейтронов в ядре - число протонов и число электронов в атоме равны порядковому номеру элемента. А чтобы узнать число нейтронов в том или ином изотопе, следует от общего массового числа отнять число протонов. При захвате ядром атома электрона протон взаимодействует с электроном в результате чего образуется нейтрон. Следовательно, при захвате ядром электрона число нейтронов в ядре уменьшается на единицу.

Заряд ядра определяется разницей между числом протонов в ядре и числом электронов в атоме. Так как протоны имеют положительный заряд, а электроны — отрицательный заряд, то суммарный заряд атома при захвате электрона уменьшается.

Ответ: 12

Задание 22.

Решение:

Для того чтобы по графику зависимости координаты тела от времени найти скорость тела в некоторый момент времени, необходимо определить тангенс угла наклона графика в соответствующей точке. Из графика видно, что в течение первых двух секунд тангенс угла наклона уменьшался, соответственно, уменьшалась и скорость шарика. Затем координата шарика перестала меняться, а значит, начиная с момента времени 2 с, шарик покоился.

Ответ: 3

Задание 23.

Решение:

1) Массы воды и времени испарения воды — Верно. Т.к для измерения скорости испарения воды, необходимо знать массу, т.е количество и

время испарения засекая его.

- 2) Массы воды, времени испарения воды и влажности в комнате Неверно. Влажность комнаты знать необязательно.
- 3) Объема воды и времени испарения воды Верно. Масса связана с объёмом по формуле m= ρV, а т.к необходимо знать массу, следовательно и объём.
- 4) Массы воды, времени испарения воды и влажности в комнате Неверно. То же самое, что и во 2-ом (Повторяется)
- 5) Массы воды, времени испарения воды и объема комнаты Неверно. Испарение воды никак не зависит от объёма комнаты.

Ответ: 13

Задание 24.

Решение:

- 1) Красные звезды самые горячие. Неверно. Самые горячие звезды это синие.
- 2) Звезды продолжают формироваться в нашей Галактике и в настоящее время. Верно.
- 3) В декабре Солнце удаляется на максимальное расстояние от Земли. Неверно. Солнце удаляется на максимальное расстояние в июне.
- 4) При одинаковой светимости горячая звезда имеет меньший размер, нежели холодная. Верно.
- 5) Диапазон значений масс существующих звёзд намного шире, чем диапазон светимостей. Неверно. Для всех звезд диапазон светимости значительно превышает пределы возможных значений масс

Ответ: 24

Задание 25.

Решение:

 h_0 - высота, на которой выключаются двигатели $h_{\rm M}$ - максимальная высота.

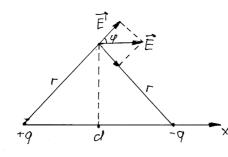
$$h_0 = \frac{at^2}{2} = \frac{5 \cdot 10^2}{2} = 250$$
м $h_{\rm M} = h_0 + V_0 t' - \frac{gt'^2}{2}$, где

$$V_0 = at = 5 \cdot 10 = 50 \text{m/c},$$

а t' - время, при котором V=0

$$t' = \frac{V - V_0}{-g} = \frac{0 - 50}{-9.8} \approx 5c$$
 $h_M = 250 + 50 \cdot 5 - \frac{9.8 \cdot 5^2}{2} = 375 M.$

Ответ: 375


Задание 26.

Решение:

$$Q = cm\Delta t = cm(t_2 - t_1) = 0.92*10^3*160*10^3*300 = 44160 \text{Дж} = 44.2 \text{кДж}$$

Ответ: 44,2

Задание 27.

$$E = k \frac{q}{r^2}$$
 - напряженность для каждого заряда по отдельности

по т. косинусов $E_0 = \sqrt{E_1^2 + E_2^2 - E_1 * E_2 * cos \alpha}$ косинус альфа это 8/12 (из рисунка) E=1.4 * 10 7

Ответ: 1.4