$$\begin{cases} \frac{xy^2 - 3xy - 3y + 9}{\sqrt{x+3}} = 0, \\ y = ax \end{cases}$$

имеет ровно два различных решения.

Решение.

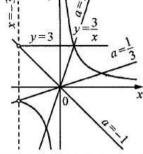
18

Запишем первое уравнение в виде

$$\frac{(y-3)(xy-3)}{\sqrt{x+3}} = 0$$
.

При $x \le -3$ левая часть не имеет смысла. При x > -3 уравнение задаёт прямую y = 3 и гиперболу $y = \frac{3}{x}$ (см. рисунок).

При каждом значении a уравнение y=ax задаёт прямую с угловым коэффициентом a, проходящую через начало координат.



При x>-3 такая прямая пересекает прямую y=3 при a<-1 и a>0, пересекает правую ветвь гиперболы $y=\frac{3}{x}$ при a>0, пересекает левую ветвь гиперболы $y=\frac{3}{x}$ при $a>\frac{1}{3}$. При этом прямая y=ax проходит через точку пересечения прямой y=3 и гиперболы $y=\frac{3}{x}$ при a=3.

Число решений исходной системы равно числу точек пересечения прямой y=3 и гиперболы $y=\frac{3}{x}$ с прямой y=ax при условии x>-3.

Таким образом, исходная система имеет ровно два решения при

$$0 < a \le \frac{1}{3}$$
; $a = 3$.

OTBET: $0 < a \le \frac{1}{3}$; a = 3.

Содержание критерия	Баллы
Обоснованно получен верный ответ	4
С помощью верного рассуждения получено множество значений a , отличающееся от искомого только включением/исключением точек $a=0$ и/или $a=\frac{1}{3}$	3
С помощью верного рассуждения получен промежуток $\left(0;\frac{1}{3}\right]$ множества значений a , возможно, с включением/исключением граничных точек	2
Задача верно сведена к исследованию взаимного расположения гиперболы и прямых (аналитически или графически) ИЛИ получен неверный ответ из-за вычислительной ошибки, но при этом верно выполнены все шаги решения	1
Решение не соответствует ни одному из критериев, перечисленных выше	0
Максимальный балл	4

Найдите все значения a, при каждом из которых уравнение

$$\sqrt{x^4 - x^2 + a^2} = x^2 + x - a$$

18

Исходное уравнение равносильно уравнению $x^4 - x^2 + a^2 = (x^2 + x - a)^2$ при условии $x^2 + x - a \ge 0$.

Решим уравнение $x^4 - x^2 + a^2 = (x^2 + x - a)^2$:

$$x^4 - x^2 + a^2 = x^4 + 2x^3 + (1 - 2a)x^2 - 2ax + a^2$$
;

$$x^{3}+(1-a)x^{2}-ax=0$$
; $x(x+1)(x-a)=0$,

откуда x = 0, x = -1 или x = a.

Исходное уравнение имеет три корня, когда эти числа различны и для каждого из них выполнено условие $x^2 + x - a \ge 0$.

Рассмотрим условия совпадения корней. При a=0 и a=-1 уравнение имеет не более двух различных корней. При остальных значениях a числа 0, -1, a различны.

При x = 0 получаем:

$$x^2+x-a=-a$$
.

Это выражение неотрицательно при $a \le 0$.

При x = -1 получаем:

$$x^2+x-a=-a$$
.

Это выражение неотрицательно при $a \le 0$.

При x = a получаем: $x^2 + x - a = a^2 \ge 0$ при всех значениях a.

Таким образом, исходное уравнение имеет ровно три различных корня при

$$a < -1$$
; $-1 < a < 0$.

Ответ: a < -1; -1 < a < 0.

18

Содержание критерия	Баллы
Обоснованно получен верный ответ	4
С помощью верного рассуждения получено множество значений a , отличающееся от искомого включением только одной точки $a=0$ или $a=-1$	3
С помощью верного рассуждения получен промежуток $(-\infty; 0]$ множества значений a	2
Получены корни уравнения $x^4 - x^2 + a^2 = \left(x^2 + x - a\right)^2$: $x = 0$, $x = -1$, $x = a$; и задача верно сведена к исследованию полученных корней при условии $x^2 + x - a > 0$ ($x^2 + x - a \ge 0$) ИЛИ получен неверный ответ из-за вычислительной ошибки, но при этом верно выполнены все шаги решения	1
Решение не соответствует ни одному из критериев, перечисленных выше	0
Максимальный балл	4

Найдите все значения а, при каждом из которых уравнение

$$2^{x}-a=\sqrt{4^{x}-a}$$

Исходное уравнение имеет единственный корень тогда и только тогда, когда уравнение $t-a=\sqrt{t^2-a}$ имеет единственный положительный корень.

При t < a левая часть полученного уравнения отрицательная, а правая неотрицательная, поэтому полученное уравнение не имеет корней, меньших a.

При t ≥ a получаем:

$$t^2 - 2at + a^2 = t^2 - a$$
; $2at = a^2 + a$.

При a=0 любое положительное значение t является корнем уравнения.

При $a \neq 0$ получаем единственный корень: $t = \frac{a+1}{2}$. Для этого корня должны выполняться условия $t \geq a$ и t > 0.

Условие $\frac{a+1}{2}$ ≥ a выполняется при $a \le 1$.

Условие $\frac{a+1}{2} > 0$ выполняется при a > -1.

Таким образом, исходное уравнение имеет единственный корень при

$$-1 < a < 0$$
; $0 < a \le 1$.

Ответ: -1 < a < 0; $0 < a \le 1$.

18

Содержание критерия	Баллы
Обоснованно получен верный ответ	4
С помощью верного рассуждения получено множество значений a , отличающееся от искомого только включением/исключением точек $a=-1$ и/или $a=1$	3
С помощью верного рассуждения получен промежуток (-1;1) множества значений <i>a</i> , возможно, с включением граничных точек	2
Задача верно сведена к исследованию линейного уравнения с параметром относительно новой переменной ИЛИ получен неверный ответ из-за вычислительной ошибки, но при этом верно выполнены все шаги решения	1
Решение не соответствует ни одному из критериев, перечисленных выше	0
Максимальный балл	4

Найдите все значения a, при каждом из которых система уравнений

$$\begin{cases} x(x^2+y^2-y-2) = |x|(y-2), \\ y = x+a \end{cases}$$

имеет ровно три различных решения.

Изобразим на координатной плоскости множество точек, координаты которых удовлетворяют первому уравнению системы.

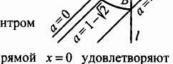
Рассмотрим три случая.

1) Если x > 0, то получаем уравнение

$$x(x^2+y^2-y-2)=x(y-2);$$

 $x^2+y^2-2y=0; x^2+(y-1)^2=1.$

Полученное уравнение задаёт окружность с центром в точке Q(0;1) и радиусом 1.



2) Если x = 0, то координаты любой точки прямой x = 0 удовлетворяют уравнению.

3) Если x < 0, то получаем уравнение

$$x(x^2+y^2-y-2)=x(2-y)$$
; $x^2+y^2-4=0$; $x^2+y^2=4$.

Полученное уравнение задаёт окружность с центром в точке O(0;0) и радиусом 2.

Таким образом, в первом случае получаем дугу ω_1 окружности $x^2 + (y-1)^2 = 1$ с концами в точках O и A(0;2), во втором — прямую I, задаваемую уравнением x=0, в третьем — дугу ω_2 окружности $x^2 + y^2 = 4$ с концами в точках A и B(0;-2) (см. рисунок).

Рассмотрим второе уравнение системы. При каждом значении a оно задаёт прямую m, параллельную прямой y = x или совпадающую с ней.

Прямые m проходят через точки B, O и A при a=-2, a=0 и a=2 соответственно.

При $a=1-\sqrt{2}$ и $a=2\sqrt{2}$ прямые m касаются дуг ω_1 и ω_2 соответственно.

Таким образом, прямая m пересекцет прямую l при любом значении a, имеет одну общую точку с дугой ω_1 при $a=1-\sqrt{2}$ и $0< a\leq 2$, имеет две общие точки с дугой ω_1 при $1-\sqrt{2}< a\leq 0$, имеет одну общую точку с дугой ω_2 при $-2\leq a<2$ и $a=2\sqrt{2}$, имеет две общие точки с дугой ω_2 при $2\leq a<2\sqrt{2}$.

Число решений исходной системы равно числу точек пересечения прямой l и дуг ω_1 и ω_2 с прямой m. Таким образом, исходная система имеет ровно три решения при

$$a=1-\sqrt{2}$$
; $0 \le a < 2$; $2 < a < 2\sqrt{2}$.

Other: $a=1-\sqrt{2}$; $0 \le a < 2$; $2 < a < 2\sqrt{2}$.

Содержание критерия	Баллы
Обоснованно получен верный ответ	4
С помощью верного рассуждения получено множество значений a , отличающееся от искомого только включением/исключением точек $a=2$ и/или $a=0$	3
С помощью верного рассуждения получен один из промежутков множества значений a : (0;2) или (2;2 $\sqrt{2}$); возможно, с включением граничных точек	2
Задача верно сведена к исследованию взаимного расположения дугокружностей и прямых (аналитически или графически) ИЛИ получен неверный ответ из-за вычислительной ошибки, но при этом верно выполнены все шаги решения	1
Решение не соответствует ни одному из критериев, перечисленных выше	0
Максимальный балл	4

$$\begin{cases} x(x^2+y^2+y-x-2) = |x|(x^2+y^2-y+x), \\ y = a(x+2) \end{cases}$$

имеет ровно три различных решения.

Решение.

Изобразим на координатной плоскости множество точек, координаты которых удовлетворяют первому уравнению системы.

Рассмотрим три случая.

1) Если x > 0, то получаем уравнение

$$x(x^2+y^2+y-x-2)=x(x^2+y^2-y+x);$$

 $2y-2x-2=0; y=x+1.$

Полученное уравнение задаёт прямую y = x + 1.

2) Если x = 0, то координаты любой точки прямой x = 0 удовлетворяют уравнению.

3) Если x < 0, то получаем уравнение

$$x(x^2+y^2+y-x-2) = x(y-x-x^2-y^2); 2x^2+2y^2-2=0; x^2+y^2=1.$$

Полученное уравнение задаёт окружность с центром в точке O(0;0) и радиусом 1.

Таким образом, в первом случае мы получаем луч r с началом в точке A(0;1), во втором — прямую l, задаваемую уравнением x=0, в третьем — дугу ω окружности $x^2+y^2=1$ с концами в точках A и B(0;-1) (см. рисунок).

Рассмотрим второе уравнение системы. При каждом значении a оно задаёт прямую m, которая проходит через точку (-2;0) и угловой коэффициент которой равен a.

Прямые *m* проходят через точки *B* и *A* при $a = -\frac{1}{2}$ и $a = \frac{1}{2}$ соответственно.

При
$$a = -\frac{\sqrt{3}}{3}$$
 и $a = \frac{\sqrt{3}}{3}$ прямые m касаются дуги ω .

Таким образом, прямая m пересекает прямую l при любом значении a, пересекает луч r при $\frac{1}{2} \le a < 1$, имеет одну общую точку с дугой ω при $a = -\frac{\sqrt{3}}{3}$, $-\frac{1}{2} < a < \frac{1}{2}$ и $a = \frac{\sqrt{3}}{3}$, имеет две общие точки с дугой ω при $-\frac{\sqrt{3}}{3} < a \le -\frac{1}{2}$ и $\frac{1}{2} \le a < \frac{\sqrt{3}}{3}$.

Число решений исходной системы равно числу точек пересечения прямой l, луча r и дуги ω с прямой m. Таким образом, исходная система имеет ровно три решения при

$$-\frac{\sqrt{3}}{3} < a < -\frac{1}{2} \; ; \; a = \frac{\sqrt{3}}{3} \; .$$
 Other: $-\frac{\sqrt{3}}{3} < a < -\frac{1}{2} \; ; \; a = \frac{\sqrt{3}}{3} \; .$

Содержание критерия	Баллы
Обоснованно получен верный ответ	4
С помощью верного рассуждения получено множество значений a , отличающееся от искомого только включением точки $a=-\frac{1}{2}$	3
С помощью верного рассуждения получен промежуток $\left(-\frac{\sqrt{3}}{3}; -\frac{1}{2}\right)$ множества значений a , возможно, с включением граничных точек	2
Задача верно сведена к исследованию взаимного расположения дуги окружности, луча и прямых (аналитически или графически) ИЛИ получен неверный ответ из-за вычислительной ошибки, но при этом верно выполнены все шаги решения	1
Решение не соответствует ни одному из критериев, перечисленных выше	0
Максимальный балл	4

$$\sqrt{x} + \sqrt{2a - x} = a$$

имеет ровно два различных корня.

Решение.

Левая часть исходного уравнения неотрицательна при любом значении x, поэтому при a < 0 корней нет.

Пусть $a \ge 0$, тогда исходное уравнение принимает вид:

$$x + 2\sqrt{x} \cdot \sqrt{2a - x} + 2a - x = a^2;$$
 $\begin{cases} 2\sqrt{(2a - x)x} = a^2 - 2a, \\ 0 \le x \le 2a. \end{cases}$

Левая часть полученного уравнения неотрицательна при любом значении x , поэтому при 0 < a < 2 корней нет.

При a = 0 уравнение $2\sqrt{-x^2} = 0$ имеет единственный корень x = 0.

При $a \ge 2$ получаем:

$$\begin{cases} 4(2a-x)x = a^4 - 4a^3 + 4a^2, & \{4x^2 - 8ax + (a^4 - 4a^3 + 4a^2) = 0, \\ 0 \le x \le 2a; & \{0 \le x \le 2a. \end{cases}$$

Дискриминант квадратного уравнения равен

$$64a^2 - 16(a^4 - 4a^3 + 4a^2) = 64a^3 - 16a^4,$$

значит, это уравнение имеет два корня при 0 < a < 4. В этом случае корни квадратного уравнения $4x^2 - 8ax + (a^4 - 4a^3 + 4a^2) = 0$ равны

$$x_1 = a \left(1 - \frac{\sqrt{4a - a^2}}{2} \right), \ x_2 = a \left(1 + \frac{\sqrt{4a - a^2}}{2} \right)$$

и всегда принадлежат отрезку [0; 2a], поскольку

$$a^2 - 4a + 4 \ge 0$$
; $\frac{4a - a^2}{4} \le 1$; $\frac{\sqrt{4a - a^2}}{2} \le 1$.

Таким образом, исходное уравнение имеет ровно два различных корня при $2 \le a < 4$.

OTBET: $2 \le a < 4$.

18

Содержание критерия	Баллы
Обоснованно получен верный ответ	4
С помощью верного рассуждения получено множество значений a , отличающееся от искомого только включением/исключением точек $a=4$ и/или $a=2$	3
Доказано, что корни уравнения $4x^2 - 8ax + (a^4 - 4a^3 + 4a^2) = 0$ удовлетворяют условию $0 \le x \le 2a$	2
Задача верно сведена к исследованию корней квадратного уравнения $4x^2 - 8ax + \left(a^4 - 4a^3 + 4a^2\right) = 0$ ИЛИ получен неверный ответ из-за вычислительной ошибки, но при этом	1
верно выполнены все шаги решения Решение не соответствует ни одному из критериев, перечисленных выше	0
Максимальный балл	4

Найдите все значения a, при каждом из которых система уравнений

$$\begin{cases} (x-3)(y+3x-9) = |x-3|^3, \\ y = x+a \end{cases}$$

Изобразим на координатной плоскости множество точек, координаты которых удовлетворяют первому уравнению системы.

Рассмотрим три случая.

1) Если x > 3, то получаем уравнение

$$(x-3)(y+3x-9)=(x-3)(x^2-6x+9);$$

 $y=x^2-9x+18.$

Полученное уравнение задаёт параболу

$$y = x^2 - 9x + 18$$
.

- 2) Если x = 3, то координаты любой точки прямой x = 3 удовлетворяют уравнению.
- 3) Если x < 3, то получаем уравнение

$$(x-3)(y+3x-9)=(3-x)(x^2-6x+9); y=-x^2+3x.$$

Полученное уравнение задаёт параболу $y = -x^2 + 3x$.

Таким образом, в первом случае мы получаем дугу ω_1 параболы $y=x^2-9x+18$ с концом в точке A(3;0), во втором — прямую I, задаваемую уравнением x=3, в третьем — дугу ω_2 параболы $y=-x^2+3x$ с концом в точке A (см. рисунок).

Рассмотрим второе уравнение системы. При каждом значении a оно задаёт прямую m, параллельную прямой y = x или совпадающую с ней.

Таким образом, прямия m пересскает прямую l при любом значении a, имеет одну общую точку с дугой ω_1 при a=-7 и a>-3, имеет две общие точки с дугой ω_1 при $-7< a \le -3$, имеет одну общую точку с дугой ω_2 при a<-3 и a=1, имеет две общие точки с дугой ω_2 при $-3 \le a < 1$.

Число решений исходной системы равно числу точек пересечения прямой t и дуг ω_1 и ω_2 с прямой m. Таким образом, исходная система имеет ровно четыре решения при

$$-7 < a < -3$$
; $-3 < a < 1$.

OTBOT: -7 < a < -3; -3 < a < 1.

Содержание критерия	Баллы
Обоснованно получен верный ответ	4
С помощью верного рассуждения получено множество значений a , отличающееся от искомого только включением точки $a=-3$	3
С помощью верного рассуждения получен один из промежутков множества значений $a: (-7; -3)$ или $(-3; 1);$ возможно, с включением граничных точек	2
Задача верно сведена к исследованию взаимного расположения дуг парабол и прямых (аналитически или графически) ИЛИ получен неверный ответ из-за вычислительной ошибки, но при этом верно выполнены все шаги решения	ſ
Решение не соответствует ни одному из критериев, перечисленных выше	0
Максимальный балл	4

Найдите все значения а, при каждом из которых система уравнений

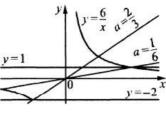
$$\begin{cases} (xy^2 - xy - 6y + 6)\sqrt{y + 2} = 0, \\ y = ax \end{cases}$$

Запишем первое уравнение в виде

$$(y-1)(xy-6)\sqrt{y+2}=0$$
.

При y < -2 левая часть уравнения не имеет смысла.

При $y \ge -2$ уравнение задаёт прямые y = -2, y = 1 и гиперболу $y = \frac{6}{7}$ (см. рисунок).



При каждом значении a уравнение y = ax задаёт прямую m с угловым коэффициентом a, проходящую через начало координат.

Прямые *m* проходят через точки пересечения прямых y=-2, y=1 и гиперболы $y=\frac{6}{x}$ при $a=\frac{1}{6}$ и $a=\frac{2}{3}$.

При $y \ge -2$ прямые m пересекают прямую y = -2 при любом ненулевом значении a, прямую y = 1 при любом ненулевом значении a, пересекают правую ветвь гиперболы $y = \frac{6}{x}$ при a > 0, пересекают левую ветвь гиперболы $y = \frac{6}{x}$ при $0 < a \le \frac{2}{3}$.

Число решений исходной системы равно числу точек пересечения прямых y=-2 , y=1 и гиперболы $y=\frac{6}{x}$ с прямой m при условии $y\geq -2$.

Таким образом, исходная система имеет ровно три решения при

$$a=\frac{1}{6};\ a\geq\frac{2}{3}.$$

OTBET: $a = \frac{1}{6}$; $a \ge \frac{2}{3}$.

Содержание критерия	Баллы
Обоснованно получен верный ответ	4
С помощью верного рассуждения получено множество значений a , отличающееся от искомого только исключением точки $a = \frac{2}{3}$	3
С помощью верного рассуждения получен промежуток $\left(\frac{2}{3}; +\infty\right)$ множества значений a , возможно, с включением граничной точки	2
Задача верно сведена к исследованию взаимного расположения гиперболы и прямых (аналитически или графически) ИЛИ получен неверный ответ из-за вычислительной ошибки, но при этом верно выполнены все шаги решения	1
Решение не соответствует ни одному из критериев, перечисленных выше	0
Максимальный балл	4